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Generating functionals for harmonic expectation values of paths with fixed end points:
Feynman diagrams for nonpolynomial interactions
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We introduce a general class of generating functionals for the calculation of quantum-mechanical expecta-
tion values of arbitrary functionals of fluctuating paths with fixed end points in configuration or momentum
space. The generating functionals are calculated explicitly for the harmonic oscillator with time-dependent
frequency, and used to derive a smearing formula for correlation functions of polynomial and nonpolynomial
functions of time-dependent positions and momenta. This formula summarizes the effect of quantum fluctua-
tions, and serves to derive generalized Wick rules and Feynman diagrams for perturbation expansions of
nonpolynomial interactiongS1063-651X99)04508-0

PACS numbd(s): 03.65—w

I. INTRODUCTION tp
ATX()] (0]=ADX(D)]+ f dx®in). (12

A useful technique for describing compactly the proper-

ties of a quantum-mechanical system is to define a sitabl n this paper we set up a useful alternative expression for the
generating functional of some external source or curren pap P P

j(t). The desired properties are obtained from functional degeneratmg functionafl.1) and a related one in momentum

rivatives with respect tq(t). For example, the correlation space. Thls. alternatlye expression 1 obtalngd by gxtendmg
functions and the time evolution amplitude in one space difN€ currentj(t) by singular sources proportional Xt
mensionx are determined by a generating functional which —t) and é(t—t,), and by reducing the path integrél.1)
is a path integral in configuration space over all patfiy Wit fixed end points in configuration space to one with van-
with fixed end pointsc(t,) =X, X(t,) =X, [[1], Chap. 2: ishing end points. This will permit us to simplify c0_n5|der-
ably the calculation of quantum-mechanical correlation func-
tions. To see this simplification explicitly, consider a
harmonic oscillator whose action reads

Xp ot i
Oxtolxata) ()] = thbe(t)exr{%A[x(t):j(t)]], CEY o
e ?.Xz(t)— ?wzxz(t)

A[X(1)]= j:bdt

. (@3

where the exponent contains the classical actidj,x(t)]  for which the generating functional can be calculated as fol-
plus a source term linear x(t): lows [[1], Eq.(3.89]:

(thb|xata)[j (H]=

Mo V2 (iM o[ (xg+X2)cosm(ty—ta) — 2XaXp ]
2wk sino(t—ty)) © 2% sina(ty—t,)

i [t XgSihw(t,—t)+XpSine(t—t,)
Xexp{ Jtd sinw(ty—t,) i

h

i ty t  sinw(t,—t)sinw(t’ —t
- dtf gy 2nelo_vsne(t 7t
AMw Ji t, Sinw(t,—ty,)

j(t)i(t')}- (1.4

a

The nonzero end points, andx,, make this expression quite involved. For vanishing end points, however, it simplifies to

M @ 12
(0 telie=0 LI (01 ( 2mif sinw(tp—t,)
i [t Sine(t,-t)sine(t’ —ty)
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The observation which motivates the present paper relies on _ ty _

replacing the currenit(t) in the simple expressiofl.5 by ~ ALP(t),X(t);k(t),j(t)]= J; dt{p(t)X(t) —H(p(t),x(t),1)}.
. . ’ 2.2

)=+ Mx8(t—ty) + Mx,d(t,—1t), (1.6 22

The total time evolution amplitude between fixed space

i S(t—t,+ . SV .
where the§ functions are understood a¥t—t,+¢) and pointsx, andx,, is given by the path integral

S(t,— e—t) in the limit e-~0. By performing some partial
integrations, this replacement reproduces all terms in the & Dp(t)DX(1)
complicated generating functionél.4), except for a rather ot XKD (1) ]= fxb' b P X

( b b| a a)[ ( )yJ( )] Yot

trivial additional singular phase factor. The important rela- 27h
tion is .
I .
(Xpto|Xata) [} (1)]= (Xp=0 tp|Xa=0 ta) ><eXP[gA[P(t),X(t):k(t),J(t)] :
X[ (1) +Mx,8(t—tg) + Mx, 8(ty—t)] 2.3
Xexp[iM(xﬁerZ) 5(0)] ) (1.77 A Fourier transformation with respect i andx, produces
2h é the time evolution amplitude in momentum space,

In Sec. Il we prove that the relatioil.7) holds for an arbi- ]
trary quantum-mechanical system whose Hamiltonian ha&PstolPata)[K(t),j(t)]
the standard form

p2 — f+wdxaf+wdxbefi(pbxbfpaxa)/ﬁ
HO(pyxat):m‘f'V(X,t) (18) — —

o , , X (Xptp|Xatp)[K(t),j (1)]. (2.9
In Sec. Il we calculate explicit amplitudes for a harmonic

oscillator with arbitrary time-dependent frequency, and as ar|1_| the initial and final d held fixed
important application we derive in Sec. IV a smearing for- ere the Initial and final momena, andp, are held fixed,

mula for calculating expectation values of polynomial andS° that the right-hand side may be written as the path integral
nonpolynomial functions of time-dependent positions and

momenta. In particular, this result would allow us to calcu- ) Pp.to Dp (1) DX(t)
late expectation values appearing in perturbation expansiordstslPata)[k(t),j(t)]= —

for nonlinear interactions, as, for example, for the nonlinear Pa-ta 2mh

o model. In Sec. V we show that our smearing formula gen- i )
eralizes Wick rules and Feynman diagrams for harmonic ex- Xexp[gA[p(t),x(t);k(t),j (M1
pectation values from products of variables to mixtures of

nonpolynomial functions and polynomials. In Sec. VI, we (2.9

finally specialize our generating functional to periodic paths.

We remark that both path integral®.3) and(2.5) are prop-
Il. GENERATING FUNCTIONALS erly defined as continuum limits of ordinary integrals after a
) ) ) time-slicing procedure. Since end points of paths are fixed in
We begin by setting up phase-space path integrals foggordinate and momentum space, respectively, the dis-
figuration or momentum space. The action contains addigjightly asymmetric inp(t) andx(t) [[1], Chap. 2.
tional currentsk(t) andj(t) coupled linearly to momentum  The time evolution amplitude.3) and (2.5) with fixed
p(t) and positionx(t). By extending the currents with sin- eng points can now be reduced to corresponding ones with
gular sfunctions as in Eq(1.6), we reduce the path integrals yanishing end points. For this, we shift the currét) in
with fixed end points to those with vanishing end points. Ourgq, (2.1) by a source ternx,8(t,—t) —x,8(t—t,) and ob-

procedure applies to arbitrary Hamiltoniadg(p,x,t), with  gerve that this produces by E¢.2) and (2.5 an overall
certain simplifications resulting from a standard Hamiltonianynase factor:

(1.9.

A. General phase-space formulation (Pbtp|Pata) [K(1) +XpS(ty—1) = Xa8(t—ta),j(1)]

Consider a quantum-mechanical particle coupled to a mo- =exp{i— Yo — DX t ot (D) i (t
mentum and a position sour&¢t) andj(t) with the classi- h (PoXo~PaXa) | (PotolPata) [K(1). (1)
cal Hamiltonian (2.6)

H(p,X,t):Ho(p,X,t)—pk(t)_Xj(t), (21)

By inverting the Fourier transformatiof2.4), the configura-
where the corresponding action reads tion space amplitud€2.3) is seen to satisfy
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(Xptp|Xata) [K(1) +X,8(ty—1) =Xz 8(t—ta),j (1)]

=(Xp+Xp tp|Xat X5 ta)[K(D),j(D)], (2.7

where again thes functions are understood a¥t,—e—t)
and 5(t—t,+ €) in the limit e+ 0. Because of this relation,
the amplitude(2.3) can be reduced to a path integral with
vanishing end points but additional terms in the current

K(t):
(Xptp|Xata) [K(1),](1)]
=(Xp=0 tp|Xa=0 ta)[K(t) +xp(tp—1)
—Xa0(t—ta),j(1)].

A similar expression exists, if momentum end points are
fixed in momentum space by addinm,d(t—t,) —ppd(ty
—1) to the currentj(t):

(Pots|Pata) [k(1),j (1)]=(Pr=0 ty|pa=0 ta)[K(1),j(t)

(2.9
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Vb tb

(FIp().x(t) Ik(L),j(t

VL&?’L

1)
Vbtb|Vata)[k(t)vj(t)]

FT&m

(2.12

Recalling Eqs(2.8) and(2.9), we shall rewrite the function-
als (Vptp|vata)[K(1),j ()] in a unified common way as fol-
lows:

(Vbtb|Vata)[k(t) ,j (t)]

_ Jwa,th S(v(ty) —Vva) (v (ty) —Vvp)

2mh

wo=0t,

xexp[,'i—A[pu),x(t);k(t),j(t)] , 213

where the paths(t) stand either fop(t) or for x(t). In each

of these cases, the patw$t) denote the conjugate variables

x(t) or p(t), respectively. In this form, the path integral

possesses the advantage that usual correlation functions

We now explore the consequences of these two relations fqp.11) can be determined by path averages, in which inter-

the calculation of correlation functions. mediate and end points are treated on equal footing. Indeed,
inserting 6 functions according to

p(ty)-- X(tm)[K(1),j (D]
J;:dpr~J;:dpn

+ o +
XJL an+1"'Jl de P1 PrXn+1 " Xm

+ paé(t_ta) - pbé(tb_t)]-
(2.9

B. Correlation functionals
. . . | P(t)X(thr)
The functional dependence of the time evolution ampli-

tudes(2.3) and(2.5) on the current&(t) andj(t) allows us
to calculate expectation values of arbitrary functionals
F[p(t),x(t)] from the path integral

(FLp(H) (O DI, J (D]
_ 1
B (Vbtblvata)[k(t)rj (t)]

y be b Dp(t)Dx(t)
27h

1
(Vbtb|Vata)[k(t):j (t)]

o(p(ty) —py)--

D it =P

ta 2mh

Va,

Flp(t).x(t)] X O(X(t1) = X1)* O(X(tm) = Xm)

Vata

xexp{%A[p(txx(t);k(t),j(t)]], (214

xex;){;b—A[p(t),X(t);k(t),J(t)], 210

) . we obtain with a similar reasoning
where the variabley may bep or x. The usual correlation
(p(ty) - X(tm))[K(1),j (D172

functions
—+ oo —+ oo
fﬂdmmfﬂdm

(p(ty)--
+ 00 +
Xf_ dxn-%—l"'f_ de P1 PrXn+1" " Xm

'p(tn)x(tn+l)' '

1
" (VptpVata) [K(D),j (D]

Pt)X(t 1) X(tm) ) KD, (D107

1
~ (Vptp|Vata) [K(), ) (D]

Vit Dp(t)DX(t
Xf btb%p(tﬂ'"p(tn)x(tm-l)“'x(tm) 0ty Dp(t)Dx(t)
Vay a Wb: "
i Xfwao,ta “2mn OVt TVa)
Xexp[% ALp(t) X(1):K(E),j(1)] 219
X 8(p(ty) = Ppa)- -+ S(P(ty) — ppn)

are special cases of ER.10, so we shall call the general
expectation values(2.10 correlation functionals The
sourcek(t) andj(t) permit us to express E(.10 in terms
of functional derivatives:

X‘S(X(tn+l) Xn+1) 5(X )_Xm)a(v(tb)_vb)

xexp[f'i—A[p(t),x<t>;k(t>.j(t)] . 219



PRE 60 GENERATING FUNCTIONALS FOR HARMONC . . . 2513

C. Standard Hamiltonian R(t)= _ﬂtz_Qz(t)_ (3.4)

The above formalism can be made more specific for the _ o _ _
standard Hamiltoniai1.8). Then the path integrals over the Since the time derivative of the Wronski determinant
momentum pathg(t) in Egs. (2.3 and (2.5 become har-

monic and can be explicitly evaluated. The phase-space in- W(t)=D4(t)Dp(t) — D4(t)Dp(t) (3.9
tegral (2.3), for instance, reduces to the configuration space i i
path integral, vanishes, we observe the identity

Da(tp)=Dy(ta). (3.6)

Note that a similar identity does not hold for the time deriva-
i tives of the two fundamental solutiorB,(t) and Dy(t).

xex;%%A[x(t);k(t),j(t)] , Indeed, partially integrating the differential equation for
Da(t) and taking into account Eq63.2)—(3.5), we deduce

. Xp sty
(thb|xata)[k(t)11(t)]:fx t Dx(t)

(2.19

. . ty .
where the currenk(t) couples linearly to the path momen- Dp(ta) +Da(tp) = —ZJ dtQ(t)Q(t)D4(1)Dp(1).
tum MX(t) in the action a 37

ty [M ; ; ; ; ;

£):k(t),j(t :J dt — x2(t) — V(x(1). 1)+ x(1)j (t Let us now determine the t|m§a eyolunon amplitu@el6 in
Ak, (0] ty [ 2 (O~ VXO.H+XOIO configuration space for a vanishing curré(t). We decom-
pose the pathx(t) into the classical pathx}(t) and the

M . -
‘ 2 quantum fluctuation$x(t) around it:
+MX(t)k(t)+ 5 k (t)}. (2.17

X(t)=xL(t) + ox(t). (3.8
A subsequent partial integration transforms the curkgnt .
to an effective coordinate current with an extra phase factorThe classical patt,(t) solves the boundary value problem

(XotolXata) [K(D,§(D)] R T |
o k=10 ) =x, Xt =%,

= (Xptp|Xata)[0,j (1) — MK(t)] (3.9

iM
X ex 7

Note that combining Eqs(2.8) and (2.18 proves relation
(1.7) for any arbitrary quantum-mechanical system with the
standard Hamiltonianl.8).

In the next section we determine the generating function
(XptplXata) [0, (t)] for a harmonic oscillator with arbitrary M
time-dependent frequend(t) and use Eq(2.18 to con- A[XL ()50, (1) ]= = [XpXL(th) — XX (t2) ]
struct the full generating functionakt,|xat)[k(t),j(t)]. 2

and the fluctuation$x(t) vanish at the end points:

1(t
kab_xaka'i‘if dt kz(t) ] . (218)
ta

OX(t,)= &X(tp)=0. (3.10

Inserting the decompositiof8.8) into the action(2.17), we
observe that due to Eg$3.9) and (3.10 the total action
agecomposes into a classical part

1(w .
lll. TIME-DEPENDENT HARMONIC OSCILLATOR +§jt dtxi()j(t), (3.11
a

Consider a standard Hamiltonid.8) with a harmonic

potential containing an arbitrary time-dependent frequency:2nd @ fluctuation part, which is simply the classical action
evaluated for the fluctuationgx(t) atj=0:

M .
V(xt)= ?Qz(t)xz- (3.9 AX(1);0,j (1) ]=A[x4,(1);0, (1) ]+ AL 8x(1);0,0].
(3.12
The generating functional®.3) and (2.5 are then express- |nserting this into the original path integré2.16), it factor-
able in terms of two fundamental solutioBg(t),Dp(t) of ~jzes into the product of a classical amplitude with the clas-

the corresponding classical equation of motion with particujca| action(3.11), and an additional fluctuation factor which
lar boundary condition§2] is equal to the amplitude at vanishing end points:

K()D,(t)=0; Dy(ty)=0, Dy(ty) =1, 3.2 _ i _
(0P(V () (te) 52 (thb|xata)[0;l(t)]:eXF’[%A[XéI(t);OJ(t)]]

R()Dy(1)=0; Dy(ty)=0, Dy(ty)=—1, (3.3 X (% =0 talxe=0 t)[0.].

whereK (t) denotes the operator (3.13
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A. Classical action

: M . .
000 (1) = — 2 2_
The classical action in the presence of currents can be’L%el(): 0 (V)] 2Da(tb)[Da(tb)Xb Do(ta)Xa™2Xas ]

expressed in terms of the solutioDg(t),D(t) of the time-
dependent harmonic boundary value problef@s2) and
(3.3). First we decompose the solution of the boundary value

ty _
+£ dt xg(t)j(t)

problem(3.9) in the presence of external sources into a ho-

mogeneous and an inhomogeneous contribution:

XL(0) =xg(t) + Ax(1). (3.19
The homogeneous solution reads
X (1) = Db(t))[()aa':tI:)a(t)Xb, (3.15
while the inhomogeneous one is given by
. 1 (t _
Axgl(t)z—Mﬁadt’Gij(t,t')J(t’), (3.19

WhereGJXj

equation of motion

K(t)GJ(t,t")=8(t—t') (3.17
with Dirichlet boundary conditions
Gjj(ta,t")=Gjj(ty,t")=0. (3.18

From Eq.(3.17) we deduce that the Green functi@}fj (t,t")
solves the homogeneous differential equationtfet’:

K(1)Gi(t,t')=0, (3.19

and that its first derivativ@tG}j-(t,t’) is discontinuous at
=t":

”[T(; [0:Gfj (6t )izt + e = A GJj (1) [i=p -] =—1.
€

(3.20
The Green function itself is continuous aroutet’:

lim [G};(t,t")]¢=t+ = Gjj(1,t") 1=t~ ]=0. (3.2D
€l0

The solution of Eqs(3.18—(3.21) is given by Wronski's

famous expression

O(t—t")Dp(1)Da(t") + O (1" —1)Do(1)Dy(t")
Da(tp)

Gi(tt)=

=Gjj(t',1), (3.22

J

where®(t—t') denotes the Heaviside function which van-
ishes fort<t’ and is equal to unity fot>t’. Inserting Egs.

(3.14) and(3.16 we obtain for the classical actid3.11)

(t,t") denotes the Green function of the classical

1 tbd tbd /GX AT 1 !
3.23
where x(t) and G}‘j(t,t’) are given by Eqgs(3.15 and
(3.22, respectively.

B. Fluctuation factor

Now we calculate the fluctuation factor in E8.13. Re-
calling the path representatid8.16) with the action(2.17),
we have to evaluate

(xp=0ty|x,=0t,)[0,0]

SXa=0ty

B Xp=0tp iM [ty “
—f Dox(t)ex %fta dt ox(t)K(t) ox(t)|.

(3.29

To this end we decompose the fluctuatidi(t) in Eq.(3.24)

into eigenfunctionsc,(t) of the operatoK (t) in Eq. (3.4)
with Dirichlet boundary conditions

K()Xp(H) =NpXn(t);  Xn(ta) =Xn(ty)=0 (3.29

which satisfy the orthonormality and completeness relations

|ttt 0=, (3.26
ta
> Xn(DXq(t)=8(t—t"), (3.27
as follows:
SX()= 2 CXy(t). (3.28

The path integral over all possible fluctuatiofis(t) in Eq.
(3.24 amounts to a product of integrals over all expansion
coefficientsc,,:

f&bzo'tbpax(t):J{H fwdcn]. (3.29

S%a=0,ty noJ-o

The Jacobi determinard of the transformatior{3.28 is an
irrelevant constant. Applying Eq83.25—(3.29), the path in-
tegral (3.24) is finally determined by

(Xp=0 ty|x,=0 t,)[0,0]= (3.30

J
\/detR(t),

where the determinant of the operaté(t) is equal to the
product of its eigenvalues
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. _ _ g [P 1/2
detR(t)=]] X, . (3.31 (=0 tplX, =0 t)[ 0,0 _ [D’(te)} ™ (3.39
n (Xp=0 tb|Xa:0 ta)[ovo]gz Dgl(tb)
C. Operator determinant This serves to determine the fluctuation factor of the initial

time-dependent harmonic oscillatorgt=1 in terms of the
E}(Iuctuatlon factor of the free particlp,=0. The latter is well

nown and may be calculated explicitly, for instance, via
time slicing[[1], Chap. 3 as

In order to calculate the operator determinéhBl), it is
advantageous to introduce a one-parameter family of oper
tors|[3,4]

K9(t)= - 3f— gQ(v), (3.32

(Xp=0 tp|X,=0 t,)[ 0,097 °=

1/2
‘(zmﬁub—ta)) - (340

depending linearly on a coupling strength parameger
€[0,1], and coinciding with the original operatdt(t) in
Eq. (3.4) for g=1. It is possible to relate the operator deter—S'nce the obvious solution of Eq3.2) at g,=0 reads
minant deK9(t) to the fundamental solutior33(t), DE(t), a (t)=tp—ts, we obtain the famous Gelfand-Yaglom
and to the Green functio®};%(t,t') emerging from Egs. formula for Dirichlet boundary conditions]:

(3.2, (3.3, (3.17, and (3.18. For this we substitute the

% A M 1/2
operatorK(t) by K9(t), and differentiate they-dependent (Xp=0 tp|x,=0 ta)[0,0]=(W) . (3.4)
version of the eigenvalue proble(8.25 with respect tag: mihD4(ty)

ax3(t) NG ax9(t) Note that similar results can also be derived for periodic and
Kg(t) 79 ———02(t)x 9t)= 79 antiperiodic boundary conditiori8,4].
(3.33 ) _
D. Full generating functional
Multlplylng Eq (333 W|th Xg(t)/)\%and performing a Su.m- Having Obtained the generating functiona|
mation ovem plus an integration with respect towe obtain (Xptp|Xata)[0,i (t)] of the harmonic oscillator with arbitrary
with Egs.(3.25, (3.26, and(3.31), frequency with vanishing currek(t), we now make use of

P te the relation(2.18 to derive the full generating functional
a_|n detk9(t)= _f dth(t)G}‘j*g(t,t). (3.39) (xbtb|>§ata)[k(t),j(t)]. The terms containing the current ve-
9 ta locity k(t) can be turned into functionals &f{t) itself with

... the help of several partial integrations. These turn out to
In the last step we have used the spectral decomposition ?I;‘move the extra phase factor in E8.18. As a result, the

the Green function time evolution amplitude in the configuration representation
)Xg(t ) is determined by a Van Vleck—Pauli-Morette type of formula

Glo(t,t')= ; : (335  [[1], Chap. 4,
(Xptp|Xata) [K(1),j(1)]

i azA(xb,tb;xa,ta)[k(t),j(t)])l’2

To solve the differential equatio3.34), we differentiate the
boundary value equatio8.2) for DJ(t) with respect tog,
and obtain the inhomogeneous initial value problem

|27 IXpdX o
) a( ) g2 _ i _
K9(t) ———=Q%t)DY(1); xexp = A(Xp .t 1 Xa,ta) [K(1), ] ()] (3.42
aDJ(t 9 aD3(t i i
a(t) _ 99Dy ) 0 (336 with the action
9 oy, 9t 99 I ;
a a -A(Xbvtb;xayta)[k(t)yj(t)]
Generalizing Eq.(3.22 from g=1 to arbitrary valuesg . 5 )
€[0,1], the solution of Eq(3.36) is given by _ MIDa(tp)X; — Dy(ta) Xa— 2XaXs] N ftbdt (X (D ()
2D(1p) et

Jd tp
@In Dg(tb)=—ft dtQ*(1)Gi%t,t).  (3.37) 1re (4 (1
: sputokio)—3 [ ot [ ot Gegeioie)
This shows that Eq(3.34) is solved by £
A Gik(t,t)j(DK(t") + G(t,t")k(D)j(t")
detk9(t)=CDJ(t,), (3.39

+ MG (t,t)k(t)k(t") | (3.43

whereC denotes some constant. Due to this result, the ratio
of two fluctuation factorg3.30 with two different param-
etersg, andg, can be rewritten as The homogeneous classical solutirg(t) is given in Eq.
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(3.19, and pg(t) denotes the classical momentupg(t)  (pyty|pata)[k(t),j(t)]
=MXy(t). The Green functlorG i(t,t") is given by Eq.
(3.22, while the others are

azA(pb.tb;pa,ta>[k(t>,j(t)])1’2

2mith
T IPadPa

O(t—t")Dp(1)D4(t")+O(t' —t)D4(t)Dy(t")

Gi(t,t")= 5 ,
ot xo] 1 APy by Pt KO0, 50
=Gy(t',1), (3.49
. . . . where the action is the Legendre transform of E343),
L O(—t)DLODL() O ~)D (DL
)= Da(ty) APo o :Par ta) (D), (]= Aoty X ) [K(E), (1]
—Gﬁk(t',t). (3.45 — PpXpt PaXa (3.5)

By differentiating Eq.(3.43 functionally with respect tg  calculated for the conjugate variables
and k, we see that the Green functions correspond to the

correlation functions _ 0A(Xp by Xa, ta) [K(1),j(1)]
i% Po= O"Xb ’
(x(x(t")[o, OJX“b——G,-X,-a,t'), (3.46 .
pa:_ a-"l()(b!tb1Xavta)l:k(t)ij(t)] (353
x(p(t"H)=[o0, O]thb—mG (L) =iAGg(t',1), 9Xa

(347 This brings Eq.(3.5)) to the form

tP())[0,0],> P=iAMG(t.t’ 3.4 .
(POPEO.0L; Wb B8 oy ty Pt k(D). (D)]

with X(t) =x(t) —xq(t) and p(t)=p(t) —py(t). These re- . .

sults can be summarized by the mnemonic rule that the _ Da(tp)[Dalty) Pa— Di(ta) P~ 2PaPs]
Green functions involving a momentum curréaft) once or B 2M[1+D,(t,)Dp(ts)]

twice follow from GX (t,t") by one or two time derivatives if
the time derlvat|ves of the Heaviside functions are neglected:

+ f dt [Xe(t)j(t) +pa(t)k(t)]

. ndGj(t,t")n o ndGj (t,t")n
ij(tyt ) Tl ij tyt _Tl tb )
——f f dt’ Gp t,t)j(t)jt")
o mPG(tt
Wt = —— (349 +GR(LE) (DKL) + GRy (6,1 k(D] (1)
A complete analogous expression to E8.43 is found for p / /
the time evolution amplitude in the momentum representa- MG (LTKOKTY) |, (353
tion. The Fourier transformatiof2.4) of Eq. (3.42 yields a
Van Vleck—Pauli Morette type of formula where the classical solution now reads

A Da(t) +Dp(t)Da(ty) ]+ pp[Da(t)Dp(ty) — Dyt
Yd(t):p[ (t)+Dp(t) (b-)] pb_[ (t)Dp(ta) b()]1 (354
M[1+Dj(tp)Dp(ta)]

andpg(t) denotes the associated classical momenpyiit) =M X (t). The Green functions in Eq43.53 turn out to be

[Dp(t)Da(tp) + Da(t)I[Da(t’)Dp(ta) = Dp(t')]

Gﬂ-(t,t’):(t—t’) . .
Da(ty)[1+Dy(ty)D(ty) ]

Lot —1) [Da(t)Dp(ta) —Dp(t) [Dp(t")Da(ty) +Da(t’) ] Gt ), (3.55

Da(tp)[1+ Da(tp) Dp(ta)]
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[Dp(t)Da(ty) + Da(t)I[Da(t’)Dp(ta) — Dp(t")]
Da(tp)[1+ Da(tp) Dp(ta)]

[Da(t)Dp(ta) = Dp(1)][Dp(t')Da(tp) + Da(t')]

Gii(t,t")=0(t—t")

+O(t' —t) =Gf(t',1),

Da(tp)[ 1+ Da(tp) Dp(ta)]
[Dp(t)Dalty) +Da(t)I[Da(t’)Dp(ta) — Dp(t')]
Da(tb)[l+ Da(tb)Db(ta)]
[Da(t)Di(ta) ~ Di(t) I[Db(t")Da(ty) + Da(t')] _

Dal(tp)[1+Da(ty)Dp(ta)]

The relation to the correlation functions is similar to E¢&46—(3.48):

GRd(tt)=0(t—t")

+O(t' —t)

~ o~ poty A1 ,
(x(OX(t))[0,01P= 1 GR(L.t),
(x(P(t"))[0,0]" P=iAGR(t.t) =iAGR (L"),

(POP(t')[0, 0 P=iAMGR(LL"),

GR(t',1).

2517

(3.5

(3.57

(3.58

(3.59
(3.60

with ?((t)zx(t)—;e(t) andf)(t)zp(t)—@(t). The relation between the similar-looking actiai®s43 and(3.53 becomes
more transparent by reexpressing both in terms of partial derivatives of the classical sotytigns,(t),pe(t),pa(t) with
respect to the end poinisg, ,x, andpy,p., respectively. In the configuration representation we obtain

% % &pcl(t) axcl(t)
At e TR T (8 1 IXp MXa | [Xp +ftbdt IXp, IXp (k(t))
(Xp, o i Xa ta) [K(1), ] ()] =5 (Xb,Xa) Copapa |kl T, o %)l gn 1) axg(t) | LD
IXp Xy Xy Xy
apcl(t) &pcl(t’) 5pcl(t) 07XC|(t')
1 oxy thdtthdt’(k .| 8-t OXa  OXp Xg Xy
2 N MR Ixg(1) Ipat’)  axg(t) Xe(t))
(9Xa aXb t?Xa &Xb
(9pcl(t) ﬁpcl(t,) apcl(t) (9XC|(t’)
, Xy Xy Xy IXg ( k(t") )
+ - ’ ’ St . .
OW=D1 axy(v) apa(t)  axg(t) axg(t) | | Lict) (3.69
07Xb 0"Xa 0Xb &Xa
The momentum representation, on the other hand, has the analogous formanitip interchanged:
Xy OXy dpat)  Xq(t)
_ R dPp  Pa | Po| [ dpp Py | (K(D)
A(pb 1tb1pa1ta)[k(t)1J(t)]_§ (pbapa) % % pa + J;a dt (pb 1pa) aﬁd(t) aYCI(t) J(t)
Py IPa IPa dPa
Ipe(t) dpe(t’)  dpe(t) dxg(t')
10Xy (o (t _ , IPa 9Py dPa  IPp
2 3. ftadtJtadt (KOID) O G5 (1) Bt dwa(t) dRalt)
dPa Py Pa Py
Ipa(t) dpg(t’)  dpa(t) dxg(t’)
, dPp  IPa Py IPa (k(t’))
+ - — Y v (1 TNk :
OW=O1 gxy(v) dpa(t)  axe(t) ax(t) | [t (362
apb apa apb &pa

These expressions for the generating functio@l42 and(3.50 exhibit clearly the symmetry properti€2.8) and(2.9).
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IV. SMEARING FORMULA FOR HARMONIC FLUCTUATIONS

As a first application of the generating functiori@l42 we derive a general rule for calculating correlation functions of
polynomial or nonpolynomial functions of(t) andp(t). The result will be expressed in the form o$mearing formulaThis
formula will represent an essential tool for calculating perturbation expansions with nonpolynomial interactions. Such expan-
sions serve in variational perturbation theory to obtain convergent approximations for quantum-statistical partition functions
[6] or density matrice$7].

Consider the correlation functions of a product of local functions for vanishing currents,

(F1(X(t1))F2(X(t2)) - FNX(tn))F N+ 1 (P(tn+ 1)) F s 2(P(tns2))- FN+M(p(tN+M))>Xb a

Xp o DXDp

(thb|xa a) Jxg ity

nljl [Fa(x(to))] H [FN+m(p<tN+m>>]exp{%A[p,x;o,m], (4.

where the harmonic time evolution amplitude with zero external curregtsg|k,t.)[0,0] is written as Kytp|Xata). By Fourier
transforming the functionk ,(x(t,))) andFy. n(p(tn+m)) according to

= = ol
ot = | axFa s x(t)= [ dF o [ S exdliaxx(m ) @2

and

s P = | 5o Fsn(Pu) 60 D)= | 5o () [ g oo B, (4.3

the correlation function$4.1) may be reexpressed as

N

I1

(XptplXata) n=1

M

<11

m=1

I§an

(F1(x(ty))-- FN+M(p(tN+M))>X b Ya=

[ ot [ 52

+wdp +oo .
f_oc ﬁFN+m(pm) f_oc dxme mPm

(thblxata)[k,j], (44)

where the generating functional is given by E8.42. The currentg(t) andk(t) are specialized to

M

N
t)=—1 n; End(t—t,), k(t>=mEl KOt =ty m)- (4.5

Inserting these equations into the actit®43 and the Green function&3.22, (3.44), and (3.45, we find the Fourier
decomposition of the generating functiorial42), so that the correlation functiori¢.4) become

(F1(x(ty))-- FN+M(p(tN+M))>Xb v

N M
H f dx,F n(xn)f gltnbaxltn]| ] f dpm Fnml pm)fJr dre ™ <P Pall e m) /A
n= m=1 2 ﬁ —®
iMm
><exp{ 2 gnGT‘j”gn,ﬂE 2 Gk o7 > knGIM™ Km,}, (4.6)
mm’ =1
where we used the abbreviations
Gjii" =Gjj(tn,ta),  Gj"=Gji(tn,tnrm)s Gk =Gliltnemtnsem)- (4.7)

To proceed, it is more convenient to write expresdiéi®) as a convolution integral
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N M

+ o0 + o0 dp
(Fa(x(t2)Frem(Plinem))e =TT f_wdannm) 11 f_mﬁm,n(pm)}
MO\ (N-M)/2
>< T) P(Xl!"'vXvali"pr) (48)
involving the Gaussian distribution
1 i
P(xl,...,pM)E(ZT)Nf dN*My ex%inv—EvTGv]. 4.9

The dimensionless vectorsandw haveN+ M components and are defined as

T_( 7 o\12 7 o\12 MO\ Y2 MO\ 12 ) »
v = MQ fla---l MQ §N1 ﬁ Kiseeny fl Km ( . @
and
( 1/2 1/2 1 1
wi=\[—] [x;—x t)(—) Xn—Xe(tn) |, — —==[p1— pa(t yeory— ——[Pm— Palt .
( 7 ) [X1—Xci(t1)] 7 [Xn—Xei(tn)] \/m[pl Pei(tn+1)] \/m[pm Pei(tnm)]
(4.11
|
The N+ M) X (N+M) matrix of Green functions P(X1,...XN+P1+---:PM)
A B = ! exp[—wTG‘lw]
Gz(BT c) (4.12 ViNTMEm)N"MdetG (2
(4.19
can be decomposed into block matricesB, andC. TheN \\hereG 1 represents the matrix inverse of E4.12) whose
X N matrix A and theM X M matrix C are defined by block form is
-1 -1 -1
Gt g2 ... gW 1 X —X"BC
b o N G =l-c™x! ctyc X BC
a—q| G G G (4.16
G.j]]N G%N Gjljl with the abbreviation
X=A—-BC B (4.17
Gl gl2 ... gim
1 GEE GEE GEEA Since the matrixG may be decomposed as
C=— . . : 4.1
Q : : - : 4.13 (1 B X 0
G e - Gl ¢=lo cllcem 1 (418

) ) » when the matrixC is regular, the determinant & factorizes
and yield quadratic forms of the position and momentumyg follows:

variables, respectively. THd XM matrix

detG=detC detX. (4.19
-G g ... _—gM . .
12k1 Jlkl lsz For singular matrixC but A regular, one may make use of
o ~Gi¢ ~Gji - -G (4.14 another decomposition,
_ém _émz _éNM 1 0\/[A B
ik ik jk G= BTA-L Xx'/lo 1) (4.20

gives rise to quadratic terms which are linear in both positionwith X’=C—BTA 1B. Then the determinant a is given
and momentum variables. The multidimensional integral inpy

Eq. (4.9 is of the Fresnel type and can easily be done, yield-

ing an explicit expression for the Gaussian distributiér®), detG=detX’ detA. (4.22



2520 HAGEN KLEINERT, AXEL PELSTER, AND MICHAEL BACHMANN PRE 60

With the Gaussian distributiof.15, our result(4.8) consti- GM(ty,... t) = (X(ty) - X(ty) )2, (5.2
tutes asmearing formulavhich describes the effect of har- @
monic fluctuations upon arbitrary products of functions of

space and momentum variables at different times. Note that it will be sufficient to study only the correlation

functions involving the deviations from the classical path,
respectively. This expectation value can be decomposed with

V. GENERALIZED WICK RULES AND FEYNMAN the help of Wick's expansion,

DIAGRAMS
In applications, there often occur correlation functions for ~ _ 2 A2
mixtures of nonpolynomial functior8(X(t)) or F(p(t)) and Gty ) ,g‘rse (o) b)) "G (tpn-1) L)),
powers according to (5.3
(FX(t1) X'(t2)) 2 ™%, (FX(t1)) P"(t2)) ™, wherep denotes the operation of pairwise index permutation.
(5.1)  Thereby, the Green functio®®(t,,t,) is already given by
(F(t1)) X"(t)) 27", (F®(ty) P(to)) e ™. Eq. (3.46). Note that Eq(5.3) may be considered as a con-

_ _ ~sequence of a simple derivative rule
In order to evaluate such correlation functions, we derive in

this section generalized Wick rules and Feynman diagrams E Xt VR(1)) 0 *a= (X (1. YX(15) )0 2 E' (1)) 2
on the basis of the smearing formu.8). (FO(t))X(t2))g (X(t)X(t2) g "(F' R(t1))g 5.4

A. Ordinary Wick rules with F'(X)=dF(X)/ox. By applying this recursively, one

It is well known that if one has to calculate expectationeventually obtains Eq5.3). And conversely, the derivative
values of polynomials with even power, Wick’s rule can berule (5.4) can be proved fopolynomialfunctions F(X(t)),
written as the sum over all possible permutations of productfollowing directly from Wick's theorem5.3).
of two-point functions. We shortly recall this expansion by ~ The two-point Green function&(?(t,t,), occurring in
considering the case of a position-dependepbint correla-  Eq.(5.3), can be considered as a Wick contraction, which we

tion function,n even, defined as introduce as follows:
. . . . ez ih
E(t) 2(t2) = (2(8) E(t2) )™ = 'M‘ij(tl,tz), (5.9
e
#(t1) p(t2) = (£(t1) B(t2) )o7°* = $hG (b1, t2), (5.9
| I—
B(t1) E(t2) = (B(tr) 2(t2) )™ = thGrs(t1, t2) = ihGji(t2, 1),
P (5.7
B(t1) Blt2) = (B(t1) Blt2) )Q™* = iAMGre(t1, t2)- (5.8
| I

Decomposing polynomial correlations &(t) and p(t) with the help of these contractions corresponding to g3 or
successively applying the derivative ru&4) leads to the following results:

~n ~m Xp 1 X minn,m) ih (n—1)/2 i% | 13 (m=1)12
<X (tl)x (t2)>ﬂ a:|:aa+22a+4.,,q Mij(tl’tl) Mij(t11t2) Mij(tz,tz) y (59)
<N ~=m Xp 1 X "o if (n=hrz . | s (m—1)/2
<X (tl)p (t2)>ﬂ ' a:|= ;2 e C Mij(tl,tl) [Iﬁij(tlatZ)] [|ﬁMGkk(t2,t2)] , (51@
. . ‘oo min(n,m) . e l i (=12
P )XY %= > ¢ [IAMGy(ty,ty)] [1Gj(t2,t)]" | Gjj(t2,t2) . (51D
l=a,a+2,a+4,... M
min(n,m)
<bn(tl)bm(t2)>?§)vxa:|_ ;2 44 C [iﬁMGkk(tlatl)](nil)lz [ihMGkk(tl.tz)]l [iﬁMGkk(tz,tz)](mil)lz (512

with the multiplicity factor
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(n=I=-H)"(m=1=1)!I'ni'm!

“= T(n—D!(m—1)!

(5.13

Note that (—k)!!=1 for any positive integek. For nonvanishing correlation, the sum+m must be even so that the
regulation parameter is defined as follows:

_ 0, n,m even,
*=11, n,m odd. (5.1

The contractions defined in Eq%.5—(5.8) can be used to treat Taylor-expandable functiB(®(t)) andF(p(t)) only. The
desired derivative rules for such correlations read

" n!

(F(x(t 1))Xn(t2)>xb Ya—

|= a,a+22,a+4,.,, (n_l)“ I

i (=02 Tig
[mij(tzytz)} [Mejj(tlatz)} (FO(t))e™, (519

n

n!
(FR(t)P"(t2) Xa_l aa+22a+4 (n_|)”||[|hMGkk(t2 t)] "2 [1AG(t1,t)] (FP®(t)) ™, (5.1
n ni
(FEODIP ()™= 2 oy [AMGdt )12 (MGt )] (FU @) ™ (5,17
! n! i% (n=by
(F(p(tl))xn(t2)>xb Ya= aagzaﬂmm{lm(-;jj(tz,tz)} [i7Gj(ta,ty )1 (FO@( 1))>xb . (5.18

The parametew distinguishes between even and odd power

B 0, n even,
*=11, n odd, (5.19

since ever(odd) powers ofn lead to ever(odd) derivatives of the functiof (X(t;)). Thelth derivativeF()(X(t,)) is formed
with respect tax(t;), andF()(p(t,)) is thelth derivative with respect tp(t;). Note that in the last line the Green function
Gjx appears with exchanged time arguments, which in this case happens to be inessential due to the yp(hetry

=Gyj(t1,tp).

B. Generalized Wick rule

According to their derivation, the contractioffs.15—(5.18 are only applicable to functions(X(t)) andF(p(t)) which
can be Taylor-expanded. In the following, we will show with the help of the smearing for@@ethat these derivative rules
remain valid for functionsF(X(t)) and F(p(t)) with Laurent expansions. Expectations of this type appear in variational
perturbation theorysee for position-position coupling Réf’]). Since the proceeding is similar in all the cagg45—-(5.18),
we shall only discuss the expectation value

(FX(t1))P"(t)) 0" (5.20

in detall. For this we consider the generating functional of all such expectation values following frof@.&g.

Sk x 1 +oo +te dp
(F(X(ty))elP (12)) b%a= Taeie j_ dx F(X)f_ mejp

i 1 1
Xexp{ZdetG — Gy, 1) x%— Z%ij(tl,tz)xp-l-mij(tl,tl)pZH. (5.21)

The p integration can easily be done, leading to



2522 HAGEN KLEINERT, AXEL PELSTER, AND MICHAEL BACHMANN PRE 60

dx

. _ ,
FX(t ))er"(tz) Xp Xa_ oiiM Gtz ,t)i%/2 _
e & —= 2w Gj;(ty,1,)/M

FIX+iAGj(ty,t2)]JeM< 2 Cijtt tv

. e 1 _
=Gl INE, i G () T (FUR(t)) ™ (5.22

[

The correlation of two functions at different times has beer(n — 1) &(¢,) 2(¢2) { F(£(21)) 2" 2(t2) )&, (5.24
reduced to a single-time expectation value of litrederiva- —

tive of the functionF (X(t;)) with respect tox(t;), denoted

by FO(X(t,)), with Green functions describing the depen-or else jump to(1b) directly.

dence on the second time. Expanding both sides in powers of (1) ContractF (X(t;))X(t,) and let the remaining poly-

j, we reobtain Eq(5.16. o nomial invariant. We define this contraction by the symbol
Now we demonstrate that the derivative rul@gsl15—

(5.18 for Laurent-expandable functiog(X(t)) andF (p(t))

~ e ~p—-1 - ~ 1~ mn—1 Ly La
also follow from generalized Wick rules. Without restriction F(thf) ! .J(t2) B w(f_l_)i(.tZNF (#(t2)) 7 (02) )

of universality, we only consider the expectation value (5.2
(FRt)X (L)) ™. (5.23
(1c) Add the termg(1a) and(1b).
The proceeding to reduce the power of the polynomial at the (2) Repeat step&la—(1c) until only expectation values of
expense of the functiok (X(t;)) is as follows. F(X) or expectations of its derivatives remain.
(1@ If possible 1=2), contractX(t,)X(t,) with multi- Summarizing, we can express the first power reduction by
plicity (n—1), giving the generalized Wick rulen=2),

(F(a(t)) 3°(t2))37™ = (n = 1) &(82) &(t2) (F(E(11)) 77(22) )™

+ F(a(t)) 3(t) 87 ()

--- (5.26
|
with the contraction rules defined in Eq&.5 and (5.25. ty th . x
Forn=1, we obtain : dtn"'Jt dty(V(X(t,),p(tn)) - -V(X(t1),p(t1))) o 2
: : (5.28

(F(3(t)&(t2))g™ = #(t1) 3(t2) (F'(x(t1)))a"™ , ,
— From Egs.(5.5-(5.8 it follows that we have four basic
(5.27 propagators whose graphical representation may be defined
as(settingi=M =1 from now on
which is valid forany function F (X(t)) generalizing the rule 4, ty = (E(t) (k) V37 = 1G5t ta),
(5.4) that was proved for polynomial functions only. Recur-

sively applying this power reduction, we finally end up with # ~~~~ t; = {(t1) pt2) )@'™ = 1Gre(t1, 12),
the derivative rule(5.15. Note that the generalization of o oza -
Wick’s rule for mixed position momentum or pure momen- 1 ===tz = (#(t)B(t2) )™ = iGi(tr, ta),
tum couplings is done along similar lines, leading to the s~ oyt .
derivative ries5.16-(5.18. ° et = (P() B(0))8 = Gkt ta) = iGk(ta, ).
A vertex is represented as usual by a small dot. The time
C. New Feynman-like rules for nonpolynomial interactions variable is integrated over at a vertex in a perturbation ex-
. : . pansion,
Higher-order perturbation expressions become usually

complicated. For simple polynomial interactions, Feynman ty
diagrams are a useful tool to classify perturbative contribu- o= f . dt.

tions with the help of graphical rules. Here, we are going to 2

set up analogous diagrammatic rules for perturbation expanA/e now introduce the diagrammatic representations of the

sions for nonpolynomial interactiong(x(t),p(t)), whose expectation value of arbitrary functioms(X(t)) or F(p(t))
contributions may be expressed as expectations values  and their derivatives as
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* = / dt (F(E())e™™, & = / dt (F(p(1)))er™e,
« / dt (F (0", « = [a (PR

o / T EONE £ = [a o),

With these elements, we can compose Feynman graphs for two-point correlation functions of tttelyfoe arbitraryn by
successively applying the generalized Wick r(@e26) or directly using the derivative relatior{5.15—(5.18. The general
results become obvious by giving explicitly a graphical representation of the following four correlation functions:

f dtlj dt(FX(t))X(tp)) Xa_j dtlf dty iGjj(ty,t)(F' (R(ty)))> @

= o

) (5.29

J dtlJ dt(F(X(ty))X2(t) o Xa_J dtlJ dty {iGj(ts, t)(FR(t))) > "2+ [1Gj (1, t) IAF " (X(t1))) P e}
OO

J ot onm e o= [t [ ot fais it t (F Gt

+[iGj; (ty,t) (" (X(£))) 2 ")

= ._Q @ (5.31

t t
f dtlf dt2<F(7((t1))7(4(t2)>Xb Xa_f bdtlftbdtz {[iGj(ta,t2) IX(F(X( 1))>gb 2+ 6[iIG;(t1,t) 4G (2,t,)

X(F"(X(1))) 2 @+ [1Gjj (11, t2) JHF @ X(ty))) e "2}

OO0 +00 < -

Mixed position-momentum and momentum-momentum cor- (F1(X(t1))F, (;((tz)»xb Xa
relations and their graphical representations are given in the
Appendix. c

The consideration of higher-order correlations with more => > o7 Famfan (XT(E "(t2))

m=0 n=0 M

than one functior (X(t)) or F(p(t)) can be reduced to the

results(5.9—(5.12) or (5.15—(5.18 by expanding them with (5.33
respect to the classical path or momentum, respectively. BYith

expanding both functions in the expectation value, one ob-

tains, for example, fi m=F™(0), i=12. (5.39
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But constructing graphical rules for such general correlationsion expansion([1], Chap. 3. With the Green functions

is more involved due to the various summations over prodgiven by Eqs(3.22), (3.44), and(3.45), the two-point corre-

ucts of powers of propagatof;; (t; ,t;) with i,j= lation for the anharmonic system with arbitrary time-
Finally, we apply the diagrammatic rules to the anhar-dependent frequency can then be expressed graphically,

monic oscillator withX* interaction, which is a powerful yielding the known decomposition for the second-order per-

system being discussed in detail with the help of a perturbaturbative contribution

|
Jdtljdtg(i4(t1) Yote = 72 m @ (5.35

with subscripftc indicating that we restrict to connected graphs only. Beyond this, our theory allows us to describe nonstandard
systems with polynomial interactiorfs.28 depending on both position and momentum, to higher order. Finally, we want to
give the graphs for a four-interacti®ip? to the second order to see the variations of possible graphs in comparison with Eq.

(5.39:
ty ty
fan fostzwrerepenie =2 OO0 w10 OO
ta
+16‘© w2 (OO 4 O +e O
216 C T e T e ‘ @
SN I (5.39
|
We see that we have the same class of graphs already occur- 1
ring in Eq. (5.39, however, with different propagators con- Z[k(t),i(t)]=
necting the vertices. Thus, both classes decay into subclasses \/D (ty)— Dy () —2
with different multiplicities, but the total numbers remain 72 al’b blta
and 24 for each type of class, respectively. Furthermore, all it t
graphs are vacuumlike graphs. Eventually, it is easy to con- xexp — _f dt| dt’
struct the Feynman graphs for polynomial correlations higher 2h Jta  Jta

than second order by applying Wick’s rule or the Feynman

rules given in this section.
J(t)G (L)) +j (DGt k()

VI. SIMPLIFICATIONS FOR PERIODIC PATHS

Up to now, we discussed the harmonic time evolution k(G (tt)j ()

amplitude with arbitrary frequency and external sources

k(t),i(t) and corresponding Green functions fulfilling Di- +Mk(t)é§k(t,t’)k(t’)”. 6.3
richlet boundary conditions. In the sense of the quantum-

mechanical partition function

+o0 The Green functions, expressed with fundamental solutions
= fﬁm dx (Xty|xty), (6.) (3.2 and(3.3), are found to be

which is an integral over the time evolution amplitude for 1 1
closed paths, it is of interest to investigate the generating G j(tt)= DLt )|:G}(j(t,t,)+ a1 )g(t)g(t )}
functional for closed paths. In analogy to E.1), we define al’b a 6.4)

Zk0i01= | ax (ki) 62

X ! 1 - !
Kt = | G (t,t") + mg(t)g(t )}

1
Da(tp)
with Eqg. (3.42 for x,=Xx,=X. One immediately observes o
thatZ=2Z[0,0]. The integral is easily done, giving =Gy(t',1), (6.5
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- 1 1 the preceding section after substituting the Green functions
() =/ | Gi(t,t") + ———= (1) g(t") ' G(t.t’ i
Kkt D,(tp) | KK a(ty,ty) d G(t,t') by G(t,t") and expectation value$t.1l) by Eq.
(6.6) (6.10.
with VIl. SUMMARY AND OUTLOOK
a(t,t’)=D,(t")—Dy(t)—2. (6.7 We have reduced generating functionals with fixed end
_ _ points to those with vanishing end points by adding special
Since the function singular sources to the currents. The new generating func-

tionals were calculated explicitly for the harmonic oscillator
9(t)=Da(t) +Dp(t) 6.8 with time-dependent frequency. From this expression, a
is periodic,g(t,) =g(t,), due to conditiong3.2), (3.3, and sme_aring forr_nula was dt_arived which serves to calculate cor-
relation functions for arbitrary polynomial or nonpolynomial
position- and momentum-dependent couplings. We have fur-
B (1 1) =B (ty 1) 6.9 f[her found ageneral_izatiqn of Wick’s thgorem of decompc_)s—
e Jivteot ' ing correlation functions involving functions of the canonic
In analogy to the harmonic propagator without externalvariables of the system. '_I'his gives rise to certain generalized
sources4.1), we can define expectation values consisting of €YNMan rules for position- and momentum-dependent ex-
N position-dependent functions aMimomentum-dependent Pectation values.

(3.6), also the Green functioé}‘j(t,t’) becomes periodic,

functions by Due to its universality, the theory should serve as a basis
for investigating physical systems with a nonstandard Hamil-
(F1(X(t))Fo(X(t2) -Fnem(Ptnem) o tonian via perturbation theory and its variational extension.

Note that a perturbation theory for momentum-dependent in-
1 3§ DxDp £ E teractions arises in important field theories such as the non-
V2 21h 1(X(t2))F2(X(t2))Frve (Pt ) linear o model. Our work is supposed to lay the foundation
for a more efficient perturbation treatment of such a theory.

i
xXexp - Al p,x;0,0] . 6.1
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of such correlation functions is exactly the same as given in

APPENDIX: GENERALIZED CORRELATION FUNCTIONS

In this appendix we give the expectations for the correlation between a general position- or momentum-dependent function
and a polynomial up to order=4.

Position-momentum coupling

t t t t
J Pt et Bt e [ty [t Gyt a7 Gty

= ke

) (A1)

ftb tp 5 Xp X th t . Xp X 1 2/pn Xp X
t dtlft dt; (FX(t))p(t2))y 0= ft dtlft dty {iGu(tz, t2)(FX(t1))) g 2+ [1G (1, t2) I(F"(X(t1))) o "2}
O T

ty t s t ty _ . .
ft dtlft dt, (F(X(t)P3(t2)) ath dtlft dty {3iG(t1,12)iG(tz,t)(F' (X(t1))) 2

G (b, ) (R (1)) ™2

=3 w3+ £ (3)

—- -
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J ot ot Pt B e o [ty |t TGttt PRGN Gt 1) it t)

X(F"(X(t)))gy "2+ [1Gju(ty, 1) JHF O X(t))) e "2}
=« { X 3 wed Ky T (A%)
Momentum-position coupling

f dtlj dt, <F(p(t1))x(t2)>xb Xa_f dtlf dty iGy;(ty,tx)(F" (P(ty) ))Xb a

= free-ece-e

5 (A5)

J ot ot P o [ty [ s 16 12 ) F Bt Gt ) O Bl
=« () o+ A x (A6)

J ot ot Pt o [ty [ e a6yt Gt (Bt

+[iGy(ty, 1) I(F" B(ty)) 2%
=3 f}Q +oK (A7)

f dty f dta(F (L) XA(t)) > o= f dt, f A{[IG (1 ,t2) T (B(t)) > "o+ BiG g (11, TG, (t2.12)

X(F"(P(t1)) 2 "+ [iGyj(ty,t2) IHF @ (B(t1))) > 2}

-

=« (X)) +ed () +477 (A8)

*ﬂ

Momentum-momentum coupling

f dtlf dt, (F(P(ty) )p(t2)>xb Xa_f dtlf dty iGyy(ty,to)(F’ (p(tl))>xb v

= e (A9)

f dt, f ity (F(B(t))P(ty)) o e f dt, f dt, {iG it ) (FB(t)) o+ [1G oty ) T (1) )

O -

(A10)
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J ot ot (P [ Mt "t (3Gt o Gratt e (F et

+[iG (b1, 1) I3(F"(B(ty)) o ™
(e £

J ot Pt P = [ et "t (liGutt e B0 6liGut o) it t)

X(F"(B(t))) 2 "+ (G, 1) M F D (B(t0))) e "2}

m“‘@ +@. (A12)

The case of position-position coupling has already been calculated in Sec. V C.
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