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Generating functionals for harmonic expectation values of paths with fixed end points:
Feynman diagrams for nonpolynomial interactions

Hagen Kleinert, Axel Pelster, and Michael Bachmann
Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany

~Received 22 February 1999!

We introduce a general class of generating functionals for the calculation of quantum-mechanical expecta-
tion values of arbitrary functionals of fluctuating paths with fixed end points in configuration or momentum
space. The generating functionals are calculated explicitly for the harmonic oscillator with time-dependent
frequency, and used to derive a smearing formula for correlation functions of polynomial and nonpolynomial
functions of time-dependent positions and momenta. This formula summarizes the effect of quantum fluctua-
tions, and serves to derive generalized Wick rules and Feynman diagrams for perturbation expansions of
nonpolynomial interactions.@S1063-651X~99!04508-0#
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I. INTRODUCTION

A useful technique for describing compactly the prop
ties of a quantum-mechanical system is to define a suit
generating functional of some external source or curr
j (t). The desired properties are obtained from functional
rivatives with respect toj (t). For example, the correlatio
functions and the time evolution amplitude in one space
mensionx are determined by a generating functional whi
is a path integral in configuration space over all pathsx(t)
with fixed end pointsx(ta)5xa , x(tb)5xb @@1#, Chap. 2#:

~xbtbuxata!@ j ~ t !#5E
xa ,ta

xb ,tbDx~ t !expH i

\
A@x~ t !; j ~ t !#J , ~1.1!

where the exponent contains the classical actionA@x(t)#
plus a source term linear inx(t):
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A@x~ t !; j ~ t !#5A@x~ t !#1E
ta

tb
dt x~ t ! j ~ t !. ~1.2!

In this paper we set up a useful alternative expression for
generating functional~1.1! and a related one in momentum
space. This alternative expression is obtained by extend
the current j (t) by singular sources proportional toḋ(tb

2t) and ḋ(t2ta), and by reducing the path integral~1.1!
with fixed end points in configuration space to one with va
ishing end points. This will permit us to simplify conside
ably the calculation of quantum-mechanical correlation fu
tions. To see this simplification explicitly, consider
harmonic oscillator whose action reads

A@x~ t !#5E
ta

tb
dtFM

2
ẋ2~ t !2

M

2
v2x2~ t !G , ~1.3!

for which the generating functional can be calculated as
lows @@1#, Eq. ~3.89!#:
to
~xbtbuxata!@ j ~ t !#5S Mv

2p i\ sinv~ tb2ta! D
1/2

expH iM v@~xb
21xa

2!cosv~ tb2ta!22xaxb#

2\ sinv~ tb2ta! J
3expH i

\ E
ta

tb
dt

xa sinv~ tb2t !1xb sinv~ t2ta!

sinv~ tb2ta!
j ~ t !

2
i

\Mv E
ta

tb
dtE

ta

t

dt8
sinv~ tb2t !sinv~ t82ta!

sinv~ tb2ta!
j ~ t ! j ~ t8!J . ~1.4!

The nonzero end pointsxa andxb make this expression quite involved. For vanishing end points, however, it simplifies

~Xb50 tbuxa50 ta!@ j ~ t !#5S Mv

2p i\ sinv~ tb2ta! D
1/2

3expH 2
i

\Mv E
ta

tb
dtE

ta

t

dt8
sinv~ tb2t !sinv~ t82ta!

sinv~ tb2ta!
j ~ t ! j ~ t8!J . ~1.5!
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The observation which motivates the present paper relie
replacing the currentj (t) in the simple expression~1.5! by

j 8~ t !5 j ~ t !1Mxaḋ~ t2ta!1Mxbḋ~ tb2t !, ~1.6!

where thed functions are understood asḋ(t2ta1e) and
ḋ(tb2e2t) in the limit ey0. By performing some partia
integrations, this replacement reproduces all terms in
complicated generating functional~1.4!, except for a rather
trivial additional singular phase factor. The important re
tion is

~xbtbuxata!@ j ~ t !#5~xb50 tbuxa50 ta!

3@ j ~ t !1Mxaḋ~ t2ta!1Mxbḋ~ tb2t !#

3expH iM

2\
~xb

21xa
2!d~0!J . ~1.7!

In Sec. II we prove that the relation~1.7! holds for an arbi-
trary quantum-mechanical system whose Hamiltonian
the standard form

H0~p,x,t !5
p2

2M
1V~x,t !. ~1.8!

In Sec. III we calculate explicit amplitudes for a harmon
oscillator with arbitrary time-dependent frequency, and as
important application we derive in Sec. IV a smearing fo
mula for calculating expectation values of polynomial a
nonpolynomial functions of time-dependent positions a
momenta. In particular, this result would allow us to calc
late expectation values appearing in perturbation expans
for nonlinear interactions, as, for example, for the nonlin
s model. In Sec. V we show that our smearing formula g
eralizes Wick rules and Feynman diagrams for harmonic
pectation values from products of variables to mixtures
nonpolynomial functions and polynomials. In Sec. VI, w
finally specialize our generating functional to periodic pat

II. GENERATING FUNCTIONALS

We begin by setting up phase-space path integrals
generating functionals with fixed end points in either co
figuration or momentum space. The action contains ad
tional currentsk(t) and j (t) coupled linearly to momentum
p(t) and positionx(t). By extending the currents with sin
gulard functions as in Eq.~1.6!, we reduce the path integra
with fixed end points to those with vanishing end points. O
procedure applies to arbitrary HamiltoniansH0(p,x,t), with
certain simplifications resulting from a standard Hamilton
~1.8!.

A. General phase-space formulation

Consider a quantum-mechanical particle coupled to a
mentum and a position sourcek(t) and j (t) with the classi-
cal Hamiltonian

H~p,x,t !5H0~p,x,t !2pk~ t !2x j~ t !, ~2.1!

where the corresponding action reads
on
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A@p~ t !,x~ t !;k~ t !, j ~ t !#5E
ta

tb
dt$p~ t !ẋ~ t !2H„p~ t !,x~ t !,t…%.

~2.2!

The total time evolution amplitude between fixed spa
pointsxa andxb is given by the path integral

~xbtbuxata!@k~ t !, j ~ t !#5E
xa ,ta

xb ,tb Dp~ t !Dx~ t !

2p\

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J .

~2.3!

A Fourier transformation with respect toxa andxb produces
the time evolution amplitude in momentum space,

~pbtbupata!@k~ t !, j ~ t !#

5E
2`

1`

dxaE
2`

1`

dxbe2 i ~pbxb2paxa!/\

3~xbtbuxatb!@k~ t !, j ~ t !#. ~2.4!

Here the initial and final momentapa andpb are held fixed,
so that the right-hand side may be written as the path inte

~pbtbupata!@k~ t !, j ~ t !#5E
pa ,ta

pb ,tb Dp~ t !Dx~ t !

2p\

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J .

~2.5!

We remark that both path integrals~2.3! and ~2.5! are prop-
erly defined as continuum limits of ordinary integrals afte
time-slicing procedure. Since end points of paths are fixed
coordinate and momentum space, respectively, the
cretized expressions for the path integrals turn out to
slightly asymmetric inp(t) andx(t) @@1#, Chap. 2#.

The time evolution amplitudes~2.3! and ~2.5! with fixed
end points can now be reduced to corresponding ones
vanishing end points. For this, we shift the currentk(t) in
Eq. ~2.1! by a source termxbd(tb2t)2xad(t2ta) and ob-
serve that this produces by Eqs.~2.2! and ~2.5! an overall
phase factor:

~pbtbupata!@k~ t !1xbd~ tb2t !2xad~ t2ta!, j ~ t !#

5expF i

\
~pbxb2paxa!G~pbtbupata!@k~ t !, j ~ t !#.

~2.6!

By inverting the Fourier transformation~2.4!, the configura-
tion space amplitude~2.3! is seen to satisfy
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~xbtbuxata!@k~ t !1xb8d~ tb2t !2xa8d~ t2ta!, j ~ t !#

5~xb1xb8 tbuxa1xa8 ta!@k~ t !, j ~ t !#, ~2.7!

where again thed functions are understood asd(tb2e2t)
andd(t2ta1e) in the limit ey0. Because of this relation
the amplitude~2.3! can be reduced to a path integral wi
vanishing end points but additionald terms in the current
k(t):

~xbtbuxata!@k~ t !, j ~ t !#

5~xb50 tbuxa50 ta!@k~ t !1xbd~ tb2t !

2xad~ t2ta!, j ~ t !#. ~2.8!

A similar expression exists, if momentum end points a
fixed in momentum space by addingpad(t2ta)2pbd(tb
2t) to the currentj (t):

~pbtbupata!@k~ t !, j ~ t !#5~pb50 tbupa50 ta!@k~ t !, j ~ t !

1pad~ t2ta!2pbd~ tb2t !#.

~2.9!

We now explore the consequences of these two relations
the calculation of correlation functions.

B. Correlation functionals

The functional dependence of the time evolution amp
tudes~2.3! and~2.5! on the currentsk(t) and j (t) allows us
to calculate expectation values of arbitrary function
F@p(t),x(t)# from the path integral

^F@p~ t !,x~ t !#&@k~ t !, j ~ t !#va ,ta

vb ,tb

5
1

~vbtbuvata!@k~ t !, j ~ t !#

3E
va ,ta

vb ,tb Dp~ t !Dx~ t !

2p\
F@p~ t !,x~ t !#

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J , ~2.10!

where the variablev may bep or x. The usual correlation
functions

^p~ t1!¯p~ tn!x~ tn11!¯x~ tm!&@k~ t !, j ~ t !#va ,ta

vb ,tb

5
1

~vbtbuvata!@k~ t !, j ~ t !#

3E
va ,ta

vb ,tb Dp~ t !Dx~ t !

2p\
p~ t1!¯p~ tn!x~ tn11!¯x~ tm!

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J ~2.11!

are special cases of Eq.~2.10!, so we shall call the genera
expectation values~2.10! correlation functionals. The
sourcesk(t) and j (t) permit us to express Eq.~2.10! in terms
of functional derivatives:
e

or

-

s

^F@p~ t !,x~ t !#&@k~ t !, j ~ t !#va ,ta

vb ,tb

5

FF\i d

dk~ t !
,
\

i

d

d j ~ t !G~vbtbuvata!@k~ t !, j ~ t !#

~vbtbuvata!@k~ t !, j ~ t !#
.

~2.12!

Recalling Eqs.~2.8! and~2.9!, we shall rewrite the function-
als (vbtb uvata)@k(t), j (t)# in a unified common way as fol
lows:

~vbtbuvata!@k~ t !, j ~ t !#

5E
wa50,ta

wb50,tb Dp~ t !Dx~ t !

2p\
d„v~ ta!2va…d„v~ tb!2vb…

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J , ~2.13!

where the pathsv(t) stand either forp(t) or for x(t). In each
of these cases, the pathsw(t) denote the conjugate variable
x(t) or p(t), respectively. In this form, the path integra
possesses the advantage that usual correlation func
~2.11! can be determined by path averages, in which int
mediate and end points are treated on equal footing. Ind
insertingd functions according to

^p~ t1!¯p~ tn!x~ tn11!¯x~ tm!&@k~ t !, j ~ t !#va ,ta

vb ,tb

5
1

~vbtbuvata!@k~ t !, j ~ t !# E2`

1`

dp1¯E
2`

1`

dpn

3E
2`

1`

dxn11¯E
2`

1`

dxm p1¯pnxn11¯xm

3E
va ,ta

vb ,tb Dp~ t !Dx~ t !

2p\
d„p~ t1!2p1…¯d„p~ tn!2pn…

3d„x~ t1!2x1…¯d„x~ tm!2xm…

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J , ~2.14!

we obtain with a similar reasoning

^p~ t1!¯p~ tn!x~ tn11!¯x~ tm!&@k~ t !, j ~ t !#va ,ta

vb ,tb

5
1

~vbtbuvata!@k~ t !, j ~ t !# E2`

1`

dp1¯E
2`

1`

dpn

3E
2`

1`

dxn11¯E
2`

1`

dxm p1¯pnxn11¯xm

3E
wa50,ta

wb50,tb Dp~ t !Dx~ t !

2p\
d„v~ ta!2va…

3d„p~ t1!2p1…•••d„p~ tn!2pn…

3d„x~ tn11!2xn11…•••d„x~ tm!2xm…d„v~ tb!2vb…

3expH i

\
A@p~ t !,x~ t !;k~ t !, j ~ t !#J . ~2.15!
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C. Standard Hamiltonian

The above formalism can be made more specific for
standard Hamiltonian~1.8!. Then the path integrals over th
momentum pathsp(t) in Eqs. ~2.3! and ~2.5! become har-
monic and can be explicitly evaluated. The phase-space
tegral ~2.3!, for instance, reduces to the configuration spa
path integral,

~xbtbuxata!@k~ t !, j ~ t !#5E
xa ,ta

xb ,tbDx~ t !

3expH i

\
A@x~ t !;k~ t !, j ~ t !#J ,

~2.16!

where the currentk(t) couples linearly to the path momen
tum Mẋ(t) in the action

A@x~ t !;k~ t !, j ~ t !#5E
ta

tb
dtH M

2
ẋ2~ t !2V„x~ t !,t…1x~ t ! j ~ t !

1Mẋ~ t !k~ t !1
M

2
k2~ t !J . ~2.17!

A subsequent partial integration transforms the currentk(t)
to an effective coordinate current with an extra phase fac

~xbtbuxata!@k~ t !, j ~ t !#

5~xbtbuxata!@0,j ~ t !2Mk̇~ t !#

3expH iM

\ Fxbkb2xaka1
1

2Eta

tb
dt k2~ t !G J . ~2.18!

Note that combining Eqs.~2.8! and ~2.18! proves relation
~1.7! for any arbitrary quantum-mechanical system with t
standard Hamiltonian~1.8!.

In the next section we determine the generating functio
(xbtbuxata)@0,j (t)# for a harmonic oscillator with arbitrary
time-dependent frequencyV(t) and use Eq.~2.18! to con-
struct the full generating functional (xbtbuxata)@k(t), j (t)#.

III. TIME-DEPENDENT HARMONIC OSCILLATOR

Consider a standard Hamiltonian~1.8! with a harmonic
potential containing an arbitrary time-dependent frequen

V~x,t !5
M

2
V2~ t !x2. ~3.1!

The generating functionals~2.3! and ~2.5! are then express
able in terms of two fundamental solutionsDa(t),Db(t) of
the corresponding classical equation of motion with parti
lar boundary conditions@2#

K̂~ t !Da~ t !50; Da~ ta!50, Ḋa~ ta!51, ~3.2!

K̂~ t !Db~ t !50; Db~ tb!50, Ḋb~ tb!521, ~3.3!

whereK̂(t) denotes the operator
e

n-
e

r:

al

:

-

K̂~ t !52] t
22V2~ t !. ~3.4!

Since the time derivative of the Wronski determinant

W~ t !5Da~ t !Ḋb~ t !2Ḋa~ t !Db~ t ! ~3.5!

vanishes, we observe the identity

Da~ tb!5Db~ ta!. ~3.6!

Note that a similar identity does not hold for the time deriv
tives of the two fundamental solutionsDa(t) and Db(t).
Indeed, partially integrating the differential equation f
Ḋa(t) and taking into account Eqs.~3.2!–~3.5!, we deduce

Ḋb~ ta!1Ḋa~ tb!522E
ta

tb
dt V~ t !V̇~ t !Da~ t !Db~ t !.

~3.7!

Let us now determine the time evolution amplitude~2.16! in
configuration space for a vanishing currentk(t). We decom-
pose the pathsx(t) into the classical pathxcl

j (t) and the
quantum fluctuationsdx(t) around it:

x~ t !5xcl
j ~ t !1dx~ t !. ~3.8!

The classical pathxcl
j (t) solves the boundary value problem

K̂~ t !xcl
j ~ t !52

j ~ t !

M
; xcl

j ~ ta!5xa , xcl
j ~ tb!5xb ,

~3.9!

and the fluctuationsdx(t) vanish at the end points:

dx~ ta!5dx~ tb!50. ~3.10!

Inserting the decomposition~3.8! into the action~2.17!, we
observe that due to Eqs.~3.9! and ~3.10! the total action
decomposes into a classical part

A@xcl
j ~ t !;0,j ~ t !#5

M

2
@xbẋcl

j ~ tb!2xaẋcl
j ~ ta!#

1
1

2Eta

tb
dt xcl

j ~ t ! j ~ t !, ~3.11!

and a fluctuation part, which is simply the classical acti
evaluated for the fluctuationsdx(t) at j 50:

A@x~ t !;0,j ~ t !#5A@xcl
j ~ t !;0,j ~ t !#1A@dx~ t !;0,0#.

~3.12!

Inserting this into the original path integral~2.16!, it factor-
izes into the product of a classical amplitude with the cl
sical action~3.11!, and an additional fluctuation factor whic
is equal to the amplitude at vanishing end points:

~xbtbuxata!@0; j ~ t !#5expH i

\
A@xcl

j ~ t !;0,j ~ t !#J
3~xb50 tbuxa50 ta!@0,0#.

~3.13!
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A. Classical action

The classical action in the presence of currents can
expressed in terms of the solutionsDa(t),Db(t) of the time-
dependent harmonic boundary value problems~3.2! and
~3.3!. First we decompose the solution of the boundary va
problem~3.9! in the presence of external sources into a h
mogeneous and an inhomogeneous contribution:

xcl
j ~ t !5xcl~ t !1Dxcl

j ~ t !. ~3.14!

The homogeneous solution reads

xcl~ t !5
Db~ t !xa1Da~ t !xb

Da~ tb!
, ~3.15!

while the inhomogeneous one is given by

Dxcl
j ~ t !52

1

M E
ta

tb
dt8Gj j

x ~ t,t8! j ~ t8!, ~3.16!

whereGj j
x (t,t8) denotes the Green function of the classic

equation of motion

K̂~ t !Gj j
x ~ t,t8!5d~ t2t8! ~3.17!

with Dirichlet boundary conditions

Gj j
x ~ ta ,t8!5Gj j

x ~ tb ,t8!50. ~3.18!

From Eq.~3.17! we deduce that the Green functionGj j
x (t,t8)

solves the homogeneous differential equation fortÞt8:

K̂~ t !Gj j
x ~ t,t8!50, ~3.19!

and that its first derivative] tGj j
x (t,t8) is discontinuous att

5t8:

lim
e↓0

@] tGj j
x ~ t,t8!u t5t81e2] tGj j

x ~ t,t8!u t5t82e#521.

~3.20!

The Green function itself is continuous aroundt5t8:

lim
e↓0

@Gj j
x ~ t,t8!u t5t81e2Gj j

x ~ t,t8!u t5t82e#50. ~3.21!

The solution of Eqs.~3.18!–~3.21! is given by Wronski’s
famous expression

Gj j
x ~ t,t8!5

Q~ t2t8!Db~ t !Da~ t8!1Q~ t82t !Da~ t !Db~ t8!

Da~ tb!

5Gj j
x ~ t8,t !, ~3.22!

whereQ(t2t8) denotes the Heaviside function which va
ishes fort,t8 and is equal to unity fort.t8. Inserting Eqs.
~3.14! and ~3.16! we obtain for the classical action~3.11!
e

e
-

l

A@xcl
j ~ t !;0,j ~ t !#5

M

2Da~ tb!
@Ḋa~ tb!xb

22Ḋb~ ta!xa
222xaxb#

1E
ta

tb
dt xcl~ t ! j ~ t !

2
1

2M E
ta

tb
dtE

ta

tb
dt8Gj j

x ~ t,t8! j ~ t ! j ~ t8!,

~3.23!

where xcl(t) and Gj j
x (t,t8) are given by Eqs.~3.15! and

~3.22!, respectively.

B. Fluctuation factor

Now we calculate the fluctuation factor in Eq.~3.13!. Re-
calling the path representation~2.16! with the action~2.17!,
we have to evaluate

~xb50tbuxa50ta!@0,0#

5E
dxa50,ta

dxb50,tbDdx~ t !expF iM

2\ E
ta

tb
dt dx~ t !K̂~ t !dx~ t !G .

~3.24!

To this end we decompose the fluctuationdx(t) in Eq. ~3.24!
into eigenfunctionsxn(t) of the operatorK̂(t) in Eq. ~3.4!
with Dirichlet boundary conditions

K̂~ t !xn~ t !5lnxn~ t !; xn~ ta!5xn~ tb!50 ~3.25!

which satisfy the orthonormality and completeness relatio

E
ta

tb
dt xn~ t !xn8~ t !5dn,n8 , ~3.26!

(
n

xn~ t !xn~ t8!5d~ t2t8!, ~3.27!

as follows:

dx~ t !5(
n

cnxn~ t !. ~3.28!

The path integral over all possible fluctuationsdx(t) in Eq.
~3.24! amounts to a product of integrals over all expans
coefficientscn :

E
dxa50,ta

dxb50,tbDdx~ t !5JH)
n
E

2`

1`

dcnJ . ~3.29!

The Jacobi determinantJ of the transformation~3.28! is an
irrelevant constant. Applying Eqs.~3.25!–~3.29!, the path in-
tegral ~3.24! is finally determined by

~xb50 tbuxa50 ta!@0,0#5
J

AdetK̂~ t !
, ~3.30!

where the determinant of the operatorK̂(t) is equal to the
product of its eigenvalues
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detK̂~ t !5)
n

ln . ~3.31!

C. Operator determinant

In order to calculate the operator determinant~3.31!, it is
advantageous to introduce a one-parameter family of op
tors @3,4#

K̂g~ t !52] t
22gV2~ t !, ~3.32!

depending linearly on a coupling strength parameterg

P@0,1#, and coinciding with the original operatorK̂(t) in
Eq. ~3.4! for g51. It is possible to relate the operator dete
minant detK̂g(t) to the fundamental solutionsDa

g(t), Db
g(t),

and to the Green functionGj j
x,g(t,t8) emerging from Eqs.

~3.2!, ~3.3!, ~3.17!, and ~3.18!. For this we substitute the
operatorK̂(t) by K̂g(t), and differentiate theg-dependent
version of the eigenvalue problem~3.25! with respect tog:

K̂g~ t !
]xn

g~ t !

]g
2V2~ t !xn

g~ t !5
]ln

g

]g
xn

g~ t !1ln
g

]xn
g~ t !

]g
.

~3.33!

Multiplying Eq. ~3.33! with xn
g(t)/ln

g and performing a sum
mation overn plus an integration with respect tot, we obtain
with Eqs.~3.25!, ~3.26!, and~3.31!,

]

]g
ln detK̂g~ t !52E

ta

tb
dt V2~ t !Gj j

x,g~ t,t !. ~3.34!

In the last step we have used the spectral decompositio
the Green function

Gj j
x,g~ t,t8!5(

n

xn
g~ t !xn

g~ t8!

ln
g . ~3.35!

To solve the differential equation~3.34!, we differentiate the
boundary value equation~3.2! for Da

g(t) with respect tog,
and obtain the inhomogeneous initial value problem

K̂g~ t !
]Da

g~ t !

]g
5V2~ t !Da

g~ t !;

]Da
g~ t !

]g
U

t5ta

5
]

]t

]Da
g~ t !

]g
U

t5ta

50. ~3.36!

Generalizing Eq.~3.22! from g51 to arbitrary valuesg
P@0,1#, the solution of Eq.~3.36! is given by

]

]g
ln Da

g~ tb!52E
ta

tb
dt V2~ t !Gj j

x,g~ t,t !. ~3.37!

This shows that Eq.~3.34! is solved by

detK̂g~ t !5CDa
g~ tb!, ~3.38!

whereC denotes some constant. Due to this result, the r
of two fluctuation factors~3.30! with two different param-
etersg1 andg2 can be rewritten as
a-

-

of

io

~xb50 tbuxa50 ta!@0,0#g1

~xb50 tbuxa50 ta!@0,0#g2
5S Da

g2~ tb!

Da
g1~ tb!

D 1/2

. ~3.39!

This serves to determine the fluctuation factor of the init
time-dependent harmonic oscillator atg151 in terms of the
fluctuation factor of the free particleg250. The latter is well
known and may be calculated explicitly, for instance, v
time slicing @@1#, Chap. 2# as

~xb50 tbuxa50 ta!@0,0#g2505S M

2p i\~ tb2ta! D
1/2

. ~3.40!

Since the obvious solution of Eq.~3.2! at g250 reads
Da

g250(tb)5tb2ta , we obtain the famous Gelfand-Yaglom
formula for Dirichlet boundary conditions@5#:

~xb50 tbuxa50 ta!@0,0#5S M

2p i\Da~ tb! D
1/2

. ~3.41!

Note that similar results can also be derived for periodic a
antiperiodic boundary conditions@3,4#.

D. Full generating functional

Having obtained the generating function
(xbtbuxata)@0,j (t)# of the harmonic oscillator with arbitrary
frequency with vanishing currentk(t), we now make use of
the relation~2.18! to derive the full generating functiona
(xbtbuxata)@k(t), j (t)#. The terms containing the current ve
locity k̇(t) can be turned into functionals ofk(t) itself with
the help of several partial integrations. These turn out
remove the extra phase factor in Eq.~2.18!. As a result, the
time evolution amplitude in the configuration representat
is determined by a Van Vleck–Pauli-Morette type of formu
@@1#, Chap. 4#,

~xbtbuxata!@k~ t !, j ~ t !#

5S i

2p\

]2A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#

]xb]xa
D 1/2

3expH i

\
A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#J ~3.42!

with the action

A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#

5
M @Ḋa~ tb!xb

22Ḋb~ ta!xa
222xaxb#

2Da~ tb!
1E

ta

tb
dt @xcl~ t ! j ~ t !

1pcl~ t !k~ t !#2
1

2Eta

tb
dtE

ta

tb
dt8F 1

M
Gj j

x ~ t,t8! j ~ t ! j ~ t8!

1Gjk
x ~ t,t8! j ~ t !k~ t8!1Gk j

x ~ t,t8!k~ t ! j ~ t8!

1MGkk
x ~ t,t8!k~ t !k~ t8!G . ~3.43!

The homogeneous classical solutionxcl(t) is given in Eq.
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~3.15!, and pcl(t) denotes the classical momentumpcl(t)
[Mẋcl(t). The Green functionGj j

x (t,t8) is given by Eq.
~3.22!, while the others are

Gjk
x ~ t,t8!5

Q~ t2t8!Db~ t !Ḋa~ t8!1Q~ t82t !Da~ t !Ḋb~ t8!

Da~ tb!

5Gk j
x ~ t8,t !, ~3.44!

Gkk
x ~ t,t8!5

Q~ t2t8!Ḋb~ t !Ḋa~ t8!1Q~ t82t !Ḋa~ t !Ḋb~ t8!

Da~ tb!

5Gkk
x ~ t8,t !. ~3.45!

By differentiating Eq.~3.43! functionally with respect toj
and k, we see that the Green functions correspond to
correlation functions

^x̃~ t !x̃~ t8!&@0,0#xa,ta

xb,tb5
i\

M
Gj j

x ~ t,t8!, ~3.46!

^x̃~ t ! p̃~ t8!&5@0,0#xa,ta

xb,tb5 i\Gjk
x ~ t,t8!5 i\Gk j

x ~ t8,t !,

~3.47!

~ p̃~ t !p̃~ t8!&@0,0#xa,ta

xb,tb5 i\MGkk
x ~ t,t8! ~3.48!

with x̃(t)5x(t)2xcl(t) and p̃(t)5p(t)2pcl(t). These re-
sults can be summarized by the mnemonic rule that
Green functions involving a momentum currentk(t) once or
twice follow from Gj j

x (t,t8) by one or two time derivatives i
the time derivatives of the Heaviside functions are neglec

Gjk
x ~ t,t8!5 9]Gj j

x ~ t,t8!9
]t8

, Gk j
x ~ t,t8!5 9]Gj j

x ~ t,t8!9
]t

,

Gkk
x ~ t,t8!5 9]2Gj j

x ~ t,t8!9
]t]t8

. ~3.49!

A complete analogous expression to Eq.~3.43! is found for
the time evolution amplitude in the momentum represen
tion. The Fourier transformation~2.4! of Eq. ~3.42! yields a
Van Vleck–Pauli Morette type of formula
e

e

d:

-

~pbtbupata!@k~ t !, j ~ t !#

5S 2p i\
]2A~pb ,tb ;pa ,ta!@k~ t !, j ~ t !#

]pa]pa
D 1/2

3expH i

\
A~pb ,tb ;pa ,ta!@k~ t !, j ~ t !#J , ~3.50!

where the action is the Legendre transform of Eq.~3.43!,

A~pb ,tb ;pa,ta!@k~ t !, j ~ t !#5A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#

2pbxb1paxa , ~3.51!

calculated for the conjugate variables

pb5
]A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#

]xb
,

pa52
]A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#

]xa
. ~3.52!

This brings Eq.~3.51! to the form

A~pb ,tb ;pa ,ta!@k~ t !, j ~ t !#

5
Da~ tb!@Ḋa~ tb!pa

22Ḋb~ ta!pb
222papb#

2M @11Ḋa~ tb!Ḋb~ ta!#

1E
ta

tb
dt @ x̄cl~ t ! j ~ t !1 p̄cl~ t !k~ t !#

2
1

2Eta

tb
dtE

ta

tb
dt8F 1

M
Gj j

p ~ t,t8! j ~ t ! j ~ t8!

1Gjk
p ~ t,t8! j ~ t !k~ t8!1Gk j

p ~ t,t8!k~ t ! j ~ t8!

1MGkk
p ~ t,t8!k~ t !k~ t8!G , ~3.53!

where the classical solution now reads
x̄cl~ t !5
pa@Da~ t !1Db~ t !Ḋa~ tb!#1pb@Da~ t !Ḋb~ ta!2Db~ t !#

M @11Ḋa~ tb!Ḋb~ ta!#
, ~3.54!

and p̄cl(t) denotes the associated classical momentump̄cl(t)[MxG cl(t). The Green functions in Eq.~3.53! turn out to be

Gj j
p ~ t,t8!5Q~ t2t8!

@Db~ t !Ḋa~ tb!1Da~ t !#@Da~ t8!Ḋb~ ta!2Db~ t8!#

Da~ tb!@11Ḋp~ tb!Ḋ~ ta!#

1Q~ t82t !
@Da~ t !Ḋb~ ta!2Db~ t !#@Db~ t8!Ḋa~ tb!1Da~ t8!#

Da~ tb!@11Ḋa~ tb!Ḋb~ ta!#
5Gj j

p ~ t8,t !, ~3.55!
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Gjk
p ~ t,t8!5Q~ t2t8!

@Db~ t !Ḋa~ tb!1Da~ t !#@Ḋa~ t8!Ḋb~ ta!2Ḋb~ t8!#

Da~ tb!@11Ḋa~ tb!Ḋb~ ta!#

1Q~ t82t !
@Da~ t !Ḋb~ ta!2Db~ t !#@Ḋb~ t8!Ḋa~ tb!1Ḋa~ t8!#

Da~ tb!@11Ḋa~ tb!Ḋb~ ta!#
5Gk j

p ~ t8,t !, ~3.56!

Gkk
p ~ t,t8!5Q~ t2t8!

@Ḋb~ t !Ḋa~ tb!1Ḋa~ t !#@Ḋa~ t8!Ḋb~ ta!2Ḋb~ t8!#

Da~ tb!@11Ḋa~ tb!Ḋb~ ta!#

1Q~ t82t !
@Ḋa~ t !Ḋb~ ta!2Ḋb~ t !#@Ḋb~ t8!Ḋa~ tb!1Ḋa~ t8!#

Da~ tb!@11Ḋa~ tb!Ḋb~ ta!#
5Gkk

p ~ t8,t !. ~3.57!

The relation to the correlation functions is similar to Eqs.~3.46!–~3.48!:

^ x̃~ t !x̃~ t8!&@0,0#pa,ta

pb,tb5
i\

M
Gj j

p ~ t,t8!, ~3.58!

^ x̃~ t ! p̃~ t8!&@0,0#pa,ta

pb,tb5 i\Gjk
p ~ t,t8!5 i\Gk j

p ~ t8,t !, ~3.59!

^ p̃~ t ! p̃~ t8!&@0,0#pa,ta

pb,tb5 i\MGkk
p ~ t,t8!, ~3.60!

with x̃(t)5x(t)2 x̄e(t) and p̃(t)5p(t)2 p̄e(t). The relation between the similar-looking actions~3.43! and ~3.53! becomes
more transparent by reexpressing both in terms of partial derivatives of the classical solutionsxcl(t),x̄cl(t),pcl(t),p̄cl(t) with
respect to the end pointsxb ,xa andpb ,pa , respectively. In the configuration representation we obtain

A~xb ,tb ;xa ,ta!@k~ t !, j ~ t !#5
1

2
~xb ,xa!S ]pb

]xb

2
]pa

]xb

]pb

]xa

2
]pa

]xa

D S xb

xa
D1E

ta

tb
dt~xb ,xa!S ]pcl~ t !

]xb

]pcl~ t !

]xa

]xcl~ t !

]xb

]xcl~ t !

]xa

D S k~ t !
j ~ t ! D

2
1

2

]xb

]pa
E

ta

tb
dtE

ta

tb
dt8„k~ t !, j ~ t !…F Q~ t2t8!S ]pcl~ t !

]xa

]pcl~ t8!

]xb

]xcl~ t !

]xa

]pcl~ t8!

]xb

]pcl~ t !

]xa

]xcl~ t8!

]xb

]xcl~ t !

]xa

]xcl~ t8!

]xb

D
1Q~ t82t !S ]pcl~ t !

]xb

]pcl~ t8!

]xa

]xcl~ t !

]xb

]pcl~ t8!

]xa

]pcl~ t !

]xb

]xcl~ t8!

]xa

]xcl~ t !

]xb

]xcl~ t8!

]xa

D G S k~ t8!

j ~ t8! D . ~3.61!

The momentum representation, on the other hand, has the analogous form withx andp interchanged:

A~pb ,tb ;pa ,ta!@k~ t !, j ~ t !#5
1

2
~pb ,pa!S 2

]xb

]pb

]xa

]pb

2
]xb

]pa

]xa

]pa

D S pb

pa
D1E

ta

tb
dt ~pb ,pa!S ] p̄cl~ t !

]pb

] p̄cl~ t !

]pa

] x̄cl~ t !

]pb

] x̄cl~ t !

]pa

D S k~ t !
j ~ t ! D

2
1

2

]xb

]pa
E

ta

tb
dtE

ta

tb
dt8„k~ t !, j ~ t !…F Q~ t2t8!S ] p̄cl~ t !

]pa

] p̄cl~ t8!

]pb

] x̄cl~ t !

]pa

] p̄cl~ t8!

]pb

] p̄cl~ t !

]pa

] x̄cl~ t8!

]pb

] x̄cl~ t !

]pa

] x̄cl~ t8!

]pb

D
1Q~ t82t !S ] p̄cl~ t !

]pb

] p̄cl~ t8!

]pa

] x̄cl~ t !

]pb

] p̄cl~ t8!

]pa

] p̄cl~ t !

]pb

] x̄cl~ t8!

]pa

] x̄cl~ t !

]pb

] x̄cl~ t8!

]pa

D G S k~ t8!

j ~ t8! D . ~3.62!

These expressions for the generating functionals~3.42! and ~3.50! exhibit clearly the symmetry properties~2.8! and ~2.9!.
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IV. SMEARING FORMULA FOR HARMONIC FLUCTUATIONS

As a first application of the generating functional~3.42! we derive a general rule for calculating correlation functions
polynomial or nonpolynomial functions ofx(t) andp(t). The result will be expressed in the form of asmearing formula. This
formula will represent an essential tool for calculating perturbation expansions with nonpolynomial interactions. Such
sions serve in variational perturbation theory to obtain convergent approximations for quantum-statistical partition fu
@6# or density matrices@7#.

Consider the correlation functions of a product of local functions for vanishing currents,

^F1„x~ t1!…F2„x~ t2!…¯FN„x~ tN!…FN11„p~ tN11!…FN12„p~ tN12!…¯FN1M„p~ tN1M !…&V
xb ,xa

5
1

~xbtbuxata!
E

xa ,ta

xb ,tb DxDp

2p\ )
n51

N

@Fn„x~ tn!…# )
m51

M

@FN1m„p~ tN1m!…#expH i

\
A@p,x;0,0#J , ~4.1!

where the harmonic time evolution amplitude with zero external currents (xbtbuxata)@0,0# is written as (xbtbuxata). By Fourier
transforming the functionsFn„x(tn)… andFN1m„p(tN1m)… according to

Fn„x~ tn!…5E
2`

1`

dxnFn~xn!d„xn2x~ tn!…5E
2`

1`

dxnF~xn!E
2`

1` djn

2p
exp$ i jn@xn2x~tn!#% ~4.2!

and

FN1m„p~ tN1m!…5E
2`

1` dpm

2p\
FN1m~pm!d„pm2p~ tN1m!…5E

2`

1` dpm

2p\
FN1m~pm!E

2`

1`

dkme2 ikm@pm2p~ tN1m!#/\, ~4.3!

the correlation functions~4.1! may be reexpressed as

^F1„x~ t1!…¯FN1M„p~ tN1M !…&V
xb ,xa5

1

~xbtbuxata! )
n51

N F E
2`

1`

dxnFn~xn!E
2`

1` djn

2p
ei jnxnG

3 )
m51

M F E
2`

1` dpm

2p\
FN1m~pm!E

2`

1`

dkme2 ikmPm /\G~xbtbuxata!@k, j #, ~4.4!

where the generating functional is given by Eq.~3.42!. The currentsj (t) andk(t) are specialized to

j ~ t !52\ (
n51

N

jnd~ t2tn!, k~ t !5 (
m51

M

kmd~ t2tN1m!. ~4.5!

Inserting these equations into the action~3.43! and the Green functions~3.22!, ~3.44!, and ~3.45!, we find the Fourier
decomposition of the generating functional~3.42!, so that the correlation functions~4.4! become

^F1„x~ t1!…¯FN1M„p~ tN1M !…&V
xb ,xa

5 )
n51

N F E
2`

1`

dxnFn~xn!E
2`

1` djn

2p
ei jn@xn2xcl~ tn!#G )

m51

M F E
2`

1` dpm

2p\
FN1m~pm!E

2`

1`

dkme2 ikm@pm2pcl~ tN1m!#/\G
3expH 2

i\

2M (
n,n851

N

jnGj j
n,n8jn81 i (

n51

N

(
m51

M

jnGjk
nmkm2

iM

2\ (
m,m851

M

kmGkk
mm8km8J , ~4.6!

where we used the abbreviations

Gj j
nn85Gj j

x ~ tn ,tn8!, Gjk
nm5Gjk

x ~ tn ,tN1m!, Gkk
mm85Gkk

x ~ tN1m ,tN1m8!. ~4.7!

To proceed, it is more convenient to write expression~4.6! as a convolution integral
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^F1„x~ t1!…¯FN1M„p~ tN1M !…&V
xb ,xa5 )

n51

N F E
2`

1`

dxnFn~xn!G )
m51

M F E
2`

1` dpm

2p\
FN1m~pm!G

3S MV

\ D ~N2M !/2

P~x1 ,...,xN ,p1 ,...,pM ! ~4.8!

involving the Gaussian distribution

P~x1 ,...,pM ![
1

~2p!N E dN1Mv expH iwTv2
i

2
vTGvJ . ~4.9!

The dimensionless vectorsv andw haveN1M components and are defined as

vT5XS \

MV D 1/2

j1 ,...,S \

MV D 1/2

jN ,S MV

\ D 1/2

k1 ,...,S MV

\ D 1/2

kMC ~4.10!

and

wT5XS MV

\ D 1/2

@x12xcl~ t1!#,...,S MV

\ D 1/2

@xN2xcl~ tN!#,2
1

A\MV
@p12pcl~ tN11!#,...,2

1

A\MV
@pM2pcl~ tN1M !#C.

~4.11!
um

io
l i
ld

f

The (N1M )3(N1M ) matrix of Green functions

G5S A
BT

B
CD ~4.12!

can be decomposed into block matricesA, B, andC. The N
3N matrix A and theM3M matrix C are defined by

A5VS Gj j
11

Gj j
12

]

Gj j
1N

Gj j
12

Gj j
11

]

Gj j
2N

¯

¯

�

¯

Gj j
1N

Gj j
2N

]

Gj j
11
D ,

C5
1

V S Gkk
11

Gkk
12

]

Gkk
1M

Gkk
12

Gkk
11

]

Gkk
2M

¯

¯

�

¯

Gkk
1M

Gkk
2M

]

Gkk
11
D ~4.13!

and yield quadratic forms of the position and moment
variables, respectively. TheN3M matrix

B5S 2Gjk
11

2Gjk
21

]

2Gjk
N1

2Gjk
12

2Gjk
11

]

2Gjk
N2

¯

¯

]

¯

2Gjk
1M

2Gjk
2M

]

2Gjk
NM
D ~4.14!

gives rise to quadratic terms which are linear in both posit
and momentum variables. The multidimensional integra
Eq. ~4.9! is of the Fresnel type and can easily be done, yie
ing an explicit expression for the Gaussian distribution~4.9!,
n
n
-

P~x1 ,...,xN ,p1 ,...,pM !

5
1

Ai N1M~2p!N2M detG
expH i

2
wTG21wJ ,

~4.15!

whereG21 represents the matrix inverse of Eq.~4.12! whose
block form is

G215S X21

2C21BTX21
2X21BC21

C211C21BTX21BC21D
~4.16!

with the abbreviation

X5A2BC21BT. ~4.17!

Since the matrixG may be decomposed as

G5S 1
0

B
CD S X

C21BT
0
1D ~4.18!

when the matrixC is regular, the determinant ofG factorizes
as follows:

detG5detC detX. ~4.19!

For singular matrixC but A regular, one may make use o
another decomposition,

G5S 1
BTA21

0
X8 D S A

0
B
1 D , ~4.20!

with X85C2BTA21B. Then the determinant ofG is given
by

detG5detX8 detA. ~4.21!
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With the Gaussian distribution~4.15!, our result~4.8! consti-
tutes asmearing formulawhich describes the effect of ha
monic fluctuations upon arbitrary products of functions
space and momentum variables at different times.

V. GENERALIZED WICK RULES AND FEYNMAN
DIAGRAMS

In applications, there often occur correlation functions
mixtures of nonpolynomial functionsF„x̃(t)… or F„p̃(t)… and
powers according to

^F„x̃~ t1!… x̃n~ t2!&V
xb ,xa

7, ^F„x̃~ t1!… p̃n~ t2!&V
xb ,xa,

~5.1!
^F„p̃~ t1!… x̃n~ t2!&V

xb ,xa, ^F„p̃~ t1!… p̃n~ t2!&V
xb ,xa.

In order to evaluate such correlation functions, we derive
this section generalized Wick rules and Feynman diagra
on the basis of the smearing formula~4.8!.

A. Ordinary Wick rules

It is well known that if one has to calculate expectati
values of polynomials with even power, Wick’s rule can
written as the sum over all possible permutations of produ
of two-point functions. We shortly recall this expansion
considering the case of a position-dependentn-point correla-
tion function,n even, defined as
f

r

n
s

ts

G~n!~ t1 ,...,tn!5^x̃~ t1!¯ x̃~ tn!&V
xb ,xa. ~5.2!

Note that it will be sufficient to study only the correlatio
functions involving the deviations from the classical pa
respectively. This expectation value can be decomposed
the help of Wick’s expansion,

G~n!~ t1 ,...,tn!5(
pairs

G~2!~ tp~1! ,tp~2!!¯G~2!~ tp~n21! ,tp~n!!,

~5.3!

wherep denotes the operation of pairwise index permutati
Thereby, the Green functionG(2)(t1 ,t2) is already given by
Eq. ~3.46!. Note that Eq.~5.3! may be considered as a con
sequence of a simple derivative rule

^F„x̃~ t1!…x̃~ t2!&V
xb ,xa5^x̃~ t1!x̃~ t2!&V

xb ,xa^F8„x̃~ t1!…&V
xb ,xa

~5.4!

with F8( x̃)5]F( x̃)/]x. By applying this recursively, one
eventually obtains Eq.~5.3!. And conversely, the derivative
rule ~5.4! can be proved forpolynomial functionsF„x̃(t)…,
following directly from Wick’s theorem~5.3!.

The two-point Green functionsG(2)(t1 ,t2), occurring in
Eq. ~5.3!, can be considered as a Wick contraction, which
introduce as follows:
~5.5!

~5.6!

~5.7!

~5.8!

Decomposing polynomial correlations ofx̃(t) and p̃(t) with the help of these contractions corresponding to Eq.~5.3! or
successively applying the derivative rule~5.4! leads to the following results:

^x̃n~ t1!x̃m~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

min~n,m!

cl F i\

M
Gj j ~ t1 ,t1!G ~n2 l !/2 F i\

M
Gj j ~ t1 ,t2!G l F i\

M
Gj j ~ t2 ,t2!G ~m2 l !/2

, ~5.9!

^x̃n~ t1!p̃m~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

min~n,m!

cl F i\

M
Gj j ~ t1 ,t1!G ~n2 l !/2

@ i\Gjk~ t1 ,t2!# l @ i\MGkk~ t2 ,t2!#~m2 l !/2, ~5.10!

^ p̃n~ t1!x̃m~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

min~n,m!

cl @ i\MGkk~ t1 ,t1!#~n2 l !/2 @ i\Gjk~ t2 ,t1!# l F i\

M
Gj j ~ t2 ,t2!G ~m2 l !/2

, ~5.11!

^ p̃n~ t1! p̃m~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

min~n,m!

cl @ i\MGkk~ t1 ,t1!#~n2 l !/2 @ i\MGkk~ t1 ,t2!# l @ i\MGkk~ t2 ,t2!#~m2 l !/2 ~5.12!

with the multiplicity factor
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cl5
~n2 l 21!!! ~m2 l 21!!! n!m!

l ! ~n2 l !! ~m2 l !!
. ~5.13!

Note that (2k)!! [1 for any positive integerk. For nonvanishing correlation, the sumn1m must be even so that th
regulation parametera is defined as follows:

a5 H0,
1,

n,m even,
n,m odd. ~5.14!

The contractions defined in Eqs.~5.5!–~5.8! can be used to treat Taylor-expandable functionsF„x̃(t)… andF„p̃(t)… only. The
desired derivative rules for such correlations read

^F„x̃~ t1!…x̃n~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

n
n!

~n2 l !!! l ! F i\

M
Gj j ~ t2 ,t2!G ~n2 l !/2 F i\

M
Gj j ~ t1 ,t2!G l

^F ~ l !
„x̃~ t1!…&V

xb ,xa, ~5.15!

^F„x̃~ t1!…p̃n~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

n
n!

~n2 l !!! l !
@ i\MGkk~ t2 ,t2!#~n2 l !/2 @ i\Gjk~ t1 ,t2!# l ^F ~ l !

„x̃~ t1!…&V
xb ,xa, ~5.16!

^F„p̃~ t1!…p̃n~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

n
n!

~n2 l !!! l !
@ i\MGkk~ t2 ,t2!#~n2 l !/2 @ i\MGkk~ t1 ,t2!# l ^F ~ l !

„p̃~ t1!…&V
xb ,xa, ~5.17!

^F„p̃~ t1!…x̃n~ t2!&V
xb ,xa5 (

l 5a,a12,a14,...

n
n!

~n2 l !!! l ! F i\

M
Gj j ~ t2 ,t2!G ~n2 l !/2

@ i\Gjk~ t2 ,t1!# l ^F ~ l !
„p̃~ t1!…&V

xb ,xa. ~5.18!

The parametera distinguishes between even and odd powern:

a5 H0,
1,

n even,
n odd, ~5.19!

since even~odd! powers ofn lead to even~odd! derivatives of the functionF„x̃(t1)…. The l th derivativeF ( l )
„x̃(t1)… is formed

with respect tox(t1), andF ( l )
„p̃(t1)… is the l th derivative with respect top(t1). Note that in the last line the Green functio

Gjk appears with exchanged time arguments, which in this case happens to be inessential due to the symmetryGjk(t2 ,t1)
5Gk j(t1 ,t2).

B. Generalized Wick rule

According to their derivation, the contractions~5.15!–~5.18! are only applicable to functionsF„x̃(t)… andF„p̃(t)… which
can be Taylor-expanded. In the following, we will show with the help of the smearing formula~4.8! that these derivative rule
remain valid for functionsF„x̃(t)… and F„p̃(t)… with Laurent expansions. Expectations of this type appear in variati
perturbation theory~see for position-position coupling Ref.@7#!. Since the proceeding is similar in all the cases~5.15!–~5.18!,
we shall only discuss the expectation value

^F„x̃~ t1!…p̃n~ t2!&V
xb ,xa ~5.20!

in detail. For this we consider the generating functional of all such expectation values following from Eq.~4.8!,

^F„x̃~ t1!…ejp̃n~ t2!&V
xb ,xa5

1

A2detG
E

2`

1`

dx F~x!E
2`

1` dp

2p\
ejp

3expH i

2 detG FM

\
Gkk~ t2 ,t2!x222

1

\
Gjk~ t1 ,t2!xp1

1

\M
Gj j ~ t1 ,t1!p2G J . ~5.21!

The p integration can easily be done, leading to
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^F„x̃~ t1!…ejp̃n~ t2!&V
xb ,xa5ei\MGkk~ t2 ,t2! j 2/2E

2`

1` dx

A2p i\Gj j ~ t1 ,t2!/M
F@x1 i\Gjk~ t1 ,t2! j #eiMx2/2\Gj j ~ t1 ,t1!

5ei\MGkk~ t2 ,t2! j 2/2(
l 50

`
1

l !
@ i\Gjk~ t1 ,t2! j # l^F ~ l !

„x̃~ t1!…&V
xb ,xa. ~5.22!
e

n-
rs

n

th

ol

f

by
The correlation of two functions at different times has be
reduced to a single-time expectation value of thel th deriva-
tive of the functionF„x̃(t1)… with respect tox(t1), denoted
by F ( l )

„x̃(t1)…, with Green functions describing the depe
dence on the second time. Expanding both sides in powe
j, we reobtain Eq.~5.16!.

Now we demonstrate that the derivative rules~5.15!–
~5.18! for Laurent-expandable functionsF„x̃(t)… andF„p̃(t)…
also follow from generalized Wick rules. Without restrictio
of universality, we only consider the expectation value

^F„x̃~ t1!…x̃n~ t2!&V
xb ,xa. ~5.23!

The proceeding to reduce the power of the polynomial at
expense of the functionF„x̃(t1)… is as follows.

~1a! If possible (n>2), contractx̃(t2) x̃(t2) with multi-
plicity (n21), giving
r-
th
f
n-
he

al
a
bu
t
a

n

of

e

~5.24!

or else jump to~1b! directly.
~1b! ContractF„x̃(t1)…x̃(t2) and let the remaining poly-

nomial invariant. We define this contraction by the symb

~5.25!

~1c! Add the terms~1a! and ~1b!.
~2! Repeat steps~1a!–~1c! until only expectation values o

F( x̃) or expectations of its derivatives remain.
Summarizing, we can express the first power reduction

the generalized Wick rule (n>2),
~5.26!
ned

ime
ex-

the
with the contraction rules defined in Eqs.~5.5! and ~5.25!.
For n51, we obtain

~5.27!

which is valid forany functionF„x̃(t)… generalizing the rule
~5.4! that was proved for polynomial functions only. Recu
sively applying this power reduction, we finally end up wi
the derivative rule~5.15!. Note that the generalization o
Wick’s rule for mixed position momentum or pure mome
tum couplings is done along similar lines, leading to t
derivative rules~5.16!–~5.18!.

C. New Feynman-like rules for nonpolynomial interactions

Higher-order perturbation expressions become usu
complicated. For simple polynomial interactions, Feynm
diagrams are a useful tool to classify perturbative contri
tions with the help of graphical rules. Here, we are going
set up analogous diagrammatic rules for perturbation exp
sions for nonpolynomial interactionsV„x(t),p(t)…, whose
contributions may be expressed as expectations values
ly
n
-

o
n-

E
ta

tb
dtn¯E

ta

tb
dt1^V„x~ tn!,p~ tn!…¯V„x~ t1!,p~ t1!…&V

xb ,xa.

~5.28!

From Eqs.~5.5!–~5.8! it follows that we have four basic
propagators whose graphical representation may be defi
as ~setting\5M51 from now on!

A vertex is represented as usual by a small dot. The t
variable is integrated over at a vertex in a perturbation
pansion,

d[E
ta

tb
dt.

We now introduce the diagrammatic representations of
expectation value of arbitrary functionsF„x̃(t)… or F„p̃(t)…
and their derivatives as
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With these elements, we can compose Feynman graphs for two-point correlation functions of the type~5.1! for arbitraryn by
successively applying the generalized Wick rule~5.26! or directly using the derivative relations~5.15!–~5.18!. The general
results become obvious by giving explicitly a graphical representation of the following four correlation functions:

E
ta

tb
dt1E

ta

tb
dt2^F„x̃~ t1!…x̃~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 iG j j ~ t1 ,t2!^F8„x̃~ t1!…&V

xb ,xa

~5.29!

E
ta

tb
dt1E

ta

tb
dt2^F„x̃~ t1!…x̃2~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $ iG j j ~ t2 ,t2!^F„x̃~ t1!…&V

xb ,xa1@ iG j j ~ t1 ,t2!#2^F9„x̃~ t1!…&V
xb ,xa%

~5.30!

E
ta

tb
dt1E

ta

tb
dt2^F„x̃~ t1!…x̃3~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $3iG j j ~ t1 ,t2!iG j j ~ t2 ,t2!^F8„x̃~ t1!…&V

xb ,xa

1@ iG j j ~ t1 ,t2!#3^F-„x̃~ t1!…&V
xb ,xa%

~5.31!

E
ta

tb
dt1E

ta

tb
dt2^F„x̃~ t1!…x̃4~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $@ iG j j ~ t2 ,t2!#2^F„x̃~ t1!…&V

xb ,xa16@ iG j j ~ t1 ,t2!#2iG j j ~ t2 ,t2!

3^F9„x̃~ t1!…&V
xb ,xa1@ iG j j ~ t1 ,t2!#4^F ~4!

„x̃~ t1!…&V
xb ,xa%

~5.32!
or
th

re
e

. B
ob
Mixed position-momentum and momentum-momentum c
relations and their graphical representations are given in
Appendix.

The consideration of higher-order correlations with mo
than one functionF„x̃(t)… or F„p̃(t)… can be reduced to th
results~5.9!–~5.12! or ~5.15!–~5.18! by expanding them with
respect to the classical path or momentum, respectively
expanding both functions in the expectation value, one
tains, for example,
-
e

y
-

^F1„x̃~ t1!…F2„x̃~ t2!…&V
xb ,xa

5 (
m50

`

(
n50

`
1

m!n!
f 1,mf 2,n ^x̃m~ t1!x̃n~ t2!&V

xb ,xa

~5.33!

with

f i ,m5F ~m!~0!, i 51,2. ~5.34!
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But constructing graphical rules for such general correlati
is more involved due to the various summations over pr
ucts of powers of propagatorsGj j (t i ,t j ) with i , j 51,2.

Finally, we apply the diagrammatic rules to the anh
monic oscillator with x̃4 interaction, which is a powerfu
system being discussed in detail with the help of a pertur
cc
-
s
2

, a
o
he
a

on
e

i-
m

or
tin

s

s
-

-

a-

tion expansion~@1#, Chap. 3!. With the Green functions
given by Eqs.~3.22!, ~3.44!, and~3.45!, the two-point corre-
lation for the anharmonic system with arbitrary tim
dependent frequency can then be expressed graphic
yielding the known decomposition for the second-order p
turbative contribution
tandard
nt to
th Eq.
~5.35!

with subscriptc indicating that we restrict to connected graphs only. Beyond this, our theory allows us to describe nons
systems with polynomial interactions~5.28! depending on both position and momentum, to higher order. Finally, we wa
give the graphs for a four-interactionx̃2p̃2 to the second order to see the variations of possible graphs in comparison wi
~5.35!:

~5.36!
ons
We see that we have the same class of graphs already o
ring in Eq. ~5.35!, however, with different propagators con
necting the vertices. Thus, both classes decay into subcla
with different multiplicities, but the total numbers remain 7
and 24 for each type of class, respectively. Furthermore
graphs are vacuumlike graphs. Eventually, it is easy to c
struct the Feynman graphs for polynomial correlations hig
than second order by applying Wick’s rule or the Feynm
rules given in this section.

VI. SIMPLIFICATIONS FOR PERIODIC PATHS

Up to now, we discussed the harmonic time evoluti
amplitude with arbitrary frequency and external sourc
k(t),i (t) and corresponding Green functions fulfilling D
richlet boundary conditions. In the sense of the quantu
mechanical partition function

Z5E
2`

1`

dx ~xtbuxta!, ~6.1!

which is an integral over the time evolution amplitude f
closed paths, it is of interest to investigate the genera
functional for closed paths. In analogy to Eq.~6.1!, we define

Z@k~ t !,i ~ t !#5E
2`

1`

dx ~xtbuxta!@k~ t !,i ~ t !# ~6.2!

with Eq. ~3.42! for xa5xb5x. One immediately observe
that Z5Z@0,0#. The integral is easily done, giving
ur-

ses

ll
n-
r

n

s

-

g

Z@k~ t !,i ~ t !#5
1

AḊa~ tb!2Ḋb~ ta!22

3expH 2
i

2\
E

ta

tb
dtE

ta

tb
dt8

3F 1

M
j ~ t !G̃j j

x ~ t,t8! j ~ t8!1 j ~ t !G̃jk
x ~ t,t8!k~ t8!

1k~ t !G̃k j
x ~ t,t8! j ~ t8!

1Mk~ t !G̃kk
x ~ t,t8!k~ t8!G J . ~6.3!

The Green functions, expressed with fundamental soluti
~3.2! and ~3.3!, are found to be

G̃j j
x ~ t,t8!5

1

Da~ tb! FGj j
x ~ t,t8!1

1

a~ ta ,tb!
g~ t !g~ t8!G ,

~6.4!

G̃jk
x ~ t,t8!5

1

Da~ tb! FGjk
x ~ t,t8!1

1

a~ ta ,tb!
g~ t !ġ~ t8!G

5G̃k j
x ~ t8,t !, ~6.5!
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G̃kk
x ~ t,t8!5

1

Da~ tb! FGkk
x ~ t,t8!1

1

a~ ta ,tb!
ġ~ t !ġ~ t8!G ,

~6.6!

with

a~ t,t8!5Ḋa~ t8!2Ḋb~ t !22. ~6.7!

Since the function

g~ t !5Da~ t !1Db~ t ! ~6.8!

is periodic,g(ta)5g(tb), due to conditions~3.2!, ~3.3!, and
~3.6!, also the Green functionG̃j j

x (t,t8) becomes periodic,

G̃j j
x ~ ta ,t8!5G̃j j

x ~ tb ,t8!. ~6.9!

In analogy to the harmonic propagator without exter
sources~4.1!, we can define expectation values consisting
N position-dependent functions andM momentum-dependen
functions by

^F1„x~ t1!…F2„x~ t2!…¯FN1M„p~ tN1M !…&V

5
1

Z R DxDp

2p\
F1„x~ t1!…F2„x~ t2!…¯FN1M„p~ tN1M !…

3expH i

\
A@p,x;0,0#J . ~6.10!

We remark that the generalization of Wick’s rule and t
graphical representation with the help of Feynman diagra
of such correlation functions is exactly the same as given
l
f

s
in

the preceding section after substituting the Green functi
G(t,t8) by G̃(t,t8) and expectation values~4.1! by Eq.
~6.10!.

VII. SUMMARY AND OUTLOOK

We have reduced generating functionals with fixed e
points to those with vanishing end points by adding spe
singular sources to the currents. The new generating fu
tionals were calculated explicitly for the harmonic oscillat
with time-dependent frequency. From this expression
smearing formula was derived which serves to calculate c
relation functions for arbitrary polynomial or nonpolynomi
position- and momentum-dependent couplings. We have
ther found a generalization of Wick’s theorem of decomp
ing correlation functions involving functions of the canon
variables of the system. This gives rise to certain generali
Feynman rules for position- and momentum-dependent
pectation values.

Due to its universality, the theory should serve as a ba
for investigating physical systems with a nonstandard Ham
tonian via perturbation theory and its variational extensi
Note that a perturbation theory for momentum-dependent
teractions arises in important field theories such as the n
linear s model. Our work is supposed to lay the foundati
for a more efficient perturbation treatment of such a theo
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APPENDIX: GENERALIZED CORRELATION FUNCTIONS

In this appendix we give the expectations for the correlation between a general position- or momentum-dependent
and a polynomial up to ordern54.

Position-momentum coupling

E
ta

tb
dt1E

ta

tb
dt2 ^F„x̃~ t1!…p̃~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 iG jk~ t1 ,t2!^F8„x̃~ t1!…&V

xb ,xa

~A1!

E
ta

tb
dt1E

ta

tb
dt2 ^F„x̃~ t1!…p̃2~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $ iGkk~ t2 ,t2!^F„x̃~ t1!…&V

xb ,xa1@ iG jk~ t1 ,t2!#2^F9„x̃~ t1!…&V
xb ,xa%

~A2!

E
ta

tb
dt1E

ta

tb
dt2 ^F„x̃~ t1!…p̃3~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $3iG jk~ t1 ,t2!iGkk~ t2 ,t2!^F8„x̃~ t1!…&V

xb ,xa

1@ iG jk~ t1 ,t2!#3^F-„x̃~ t1!…&V
xb ,xa%

~A3!
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E
ta

tb
dt1E

ta

tb
dt2 ^F„x̃~ t1!…p̃4~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $@ iGkk~ t2 ,t2!#2^F„x̃~ t1!…&V

xb ,xa16@ iG jk~ t1 ,t2!#2iGkk~ t2 ,t2!

3^F9„x̃~ t1!…&V
xb ,xa1@ iG jk~ t1 ,t2!#4^F ~4!

„x̃~ t1!…&V
xb ,xa%

~A4!

Momentum-position coupling

E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…x̃~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 iGk j~ t1 ,t2!^F8„p̃~ t1!…&V

xb ,xa

~A5!

E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…x̃2~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $ iG j j ~ t2 ,t2!^F„p̃~ t1!…&V

xb ,xa1@ iGk j~ t1 ,t2!#2^F9„p̃~ t1!…&V
xb ,xa%

~A6!

E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…x̃3~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $3iGk j~ t1 ,t2!iG j j ~ t2 ,t2!^F8„p̃~ t1!…&V

xb ,xa

1@ iGk j~ t1 ,t2!#3^F-„p̃~ t1!…&V
xb ,xa%

~A7!

E
ta

tb
dt1E

ta

tb
dt2^F„p̃~ t1!…x̃4~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2$@ iG j j ~ t2 ,t2!#2^F„p̃~ t1!…&V

xb ,xa16@ iGk j~ t1 ,t2!#2iG j j ~ t2 ,t2!

3^F9„p̃~ t1!…&V
xb ,xa1@ iGk j~ t1 ,t2!#4^F ~4!

„p̃~ t1!…&V
xb ,xa%

~A8!

Momentum-momentum coupling

E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…p̃~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 iGkk~ t1 ,t2!^F8„p̃~ t1!…&V

xb ,xa

~A9!

E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…p̃2~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $ iGkk~ t2 ,t2!^F„p̃~ t1!…&V

xb ,xa1@ iGkk~ t1 ,t2!#2^F9„p̃~ t1!…&V
xb ,xa%

~A10!



PRE 60 2527GENERATING FUNCTIONALS FOR HARMONIC . . .
E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…p̃3~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $3iGkk~ t1 ,t2!iGkk~ t2 ,t2!^F8„p̃~ t1!…&V

xb ,xa

1@ iGkk~ t1 ,t2!#3^F-„p̃~ t1!…&V
xb ,xa%

~A11!

E
ta

tb
dt1E

ta

tb
dt2 ^F„p̃~ t1!…p̃4~ t2!&V

xb ,xa5E
ta

tb
dt1E

ta

tb
dt2 $@ iGkk~ t2 ,t2!#2^F„p̃~ t1!…&V

xb ,xa16@ iGkk~ t1 ,t2!#2iGkk~ t2 ,t2!

3^F9„p̃~ t1!…&V
xb ,xa1@ iGkk~ t1 ,t2!#4^F ~4!

„p̃~ t1!…&V
xb ,xa%

~A12!

The case of position-position coupling has already been calculated in Sec. V C.
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